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Introduction

Test Data and Tools

Accurate carbon footprint prediction is 
essential for sustainable industrial practices 
and regulatory compliance. To compute the 
carbon footprint of products, we need to 
know the footprints of the individual 
components and steps used in 
manufacturing.

The calculation involves multiplying each 
component’s quantity by a specific emission 
factor and then summing over all 
components. Often, emission factors aren’t 
known by suppliers of specific components, 
so we use standard values from emissions 
databases (essentially look-up tables).

We evaluated our framework using real-world Life Cycle Assessment (LCA) data from 
the TianGong open-source database, containing over 10,000 unit processes. Each process 
was matched with corresponding carbon emission factors from openLCA Nexus, 
ensuring consistent input dimensions (n = 557). The curated dataset comprised 508 
processes involving 97 materials, with carbon footprints computed as the weighted sum 
of input quantities and emission factors.

The data were split into 80% for federated training (three clients) and 20% for 
testing. Experiments were conducted in Google Colab using Python 3.10 and PyTorch
2.5.1. Each client trained an identical three-layer multilayer perceptron (hidden 
dimension = 500) using the Opacus library to enforce differential privacy through 
clipping and noise addition. For proof-of-concept validation, we performed a single 
federated round (T = 1) to demonstrate the effectiveness of the proposed DPFL approach.
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Even the most extensive databases 
today have only thousands of 
unique chemistries and materials 
out of the hundreds of millions of 
chemistries and materials 
published on to date.

Part of the problem is that detailed 
carbon footprint calculations 
include proprietary materials and 
process data. This significantly 
limits data sharing. Thus, 
databases are scaling, but not 
quickly enough to meet the needs 
of regulatory reporting and 
sustainable decision-making.

We recast the footprint calculation as a deep 
learning problem, allowing us to use privacy-
preserving techniques to improve the accuracy 
of calculations.
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Our framework, called Differentially Private Federated Learning, enables collaborative model training across multiple 
participants without requiring any exchange of raw data. Federated Learning allows local models to be trained independently 
and only share model updates, not proprietary datasets. Differential Privacy ensures that even the shared model updates 
cannot reveal information about any individual dataset, by introducing mathematically calibrated noise. Secure Transmission
further protects information during aggregation by transmitting only model differences instead of full parameters.

Key algorithm for the local model update
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Results
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DPFL achieves high accuracy while preserving privacy. Aggregating noisy local models 
improves performance compared to individual clients, reaching R² = 0.96 at ε = 15, within 
5% of the non-private baseline.

Accurate and transparent Life Cycle Impact Assessment (LCIA) is essential for sustainable 
design and compliance with emerging climate regulations. Yet, existing databases capture 
only a fraction of the 204 million known materials, leading to inconsistent impact 
values that can differ by up to 600% across sources.

Our Differentially Private Federated Learning (DPFL) framework enables 
organizations to collaboratively build carbon footprint prediction models without sharing 
proprietary data. 

This approach provides a scalable and privacy-preserving foundation for Scope 3 
emissions reporting, bridging data silos across industries. By combining accuracy, 
security, and collaboration, DPFL advances global sustainability through trustworthy, 
data-driven environmental insight.


	Slide 1: Differentially Private Federated Learning for High-Accuracy Carbon Footprint Prediction

