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Abstract

Life Cycle Impact Assessment (LCIA) often lacks accurate data owing to reluctance
in industry to share proprietary production information. Here, we present a privacy-
preserving framework that improves carbon footprint prediction using federated
learning and differential privacy. Our method maintains data confidentiality while
enhancing prediction accuracy and consistency. Experiments on public data show
strong performance (R? = 0.96 at ¢ = 15), comparable to standard and aggregated
data models. This approach enables more reliable Scope 3 emissions assessments,
supporting accurate and collaborative LCIA amid growing regulatory demands.

1 Introduction

Life Cycle Impact Assessment (LCIA) plays a central role in sustainable design by estimating
environmental impacts across supply chains [[L1]. The LCIA process involves converting material
and energy flows into impact indicators, such as global warming potential, using characterization
factors. These factors are often sourced from databases such as ecoinvent (https://ecoinvent.
org/database/), Sphera GaBi (https://lcadatabase.sphera.com/), and openLCA Nexus
(https://nexus.openlca.org/databases), especially when direct supplier data is unavailable.
However, existing databases contain only a fraction of the 204 million known materials [3], often
leading to inconsistent assessments. For example, 100-year global warming potential values can vary
by up to 600 percent between sources [4]. With new regulations like the EU’s CSRD and California’s
Climate Corporate Data Accountability Act (HSC 38532), companies face growing pressure to report
Scope 3 emissions, increasing the demand for reliable carbon footprint prediction frameworks.

We can treat carbon footprint and other LCIA calculations as a supervised deep learning problem:
the inputs are the quantities of resources used by a process, and the model predicts its carbon
footprint, trained to minimize prediction error. Training such models is technically straightforward
but practically challenging: process and resource data are proprietary and often contain information
that could be relevant to a company’s competitive advantage, so organizations hesitate to share such
data within their own supply chains and publicly through databases, leading to siloed, small datasets
and models that do not generalize well. Prior work has improved life cycle assessment models
using machine learning [2l], decision trees [13]], secure multi-party computation [8]], and probabilistic
methods [6]; integrating privacy-preserving techniques into generalized databases of characterization
factors remains a promising direction to address key LCIA limitations.

Here, we propose a practical framework that integrates federated learning and differential privacy.
Federated learning frameworks aggregate locally trained model updates at a central server without
exposing raw data, and are widely accepted in privacy-sensitive environments such as healthcare,
finance, and mobile applications [7]. However, even federated learning models are susceptible to
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Algorithm 1 Differentially Private Federated Learning (DPFL)

Input: Datasets {D;};c[,,,) belonging to m clients, initial baseline model 6, target privacy budget
(€,9), number of local epochs E, learning rate 7, the number of round T’
Output: Differentially private global model 6
for eachroundt =1,2,...,T do
for each client ¢ € [m] in parallel do
Receive global model 6, from the server
Compute noisy local gradient updates:
§; = LocalTrain(6y, D;, E, n, 7, 72-)
Send g; to the server
end for
Aggreigate noisy gradients at the server:

= m 2uies Yi
Update global model: 6, < 0, + A
end for -
Return the final global model 6 = 6,

privacy risks, as they can memorize and potentially reveal information about their training data.
Through the injection of random noise into the model updates, differential privacy (DP) provides a
formal guarantee that the inclusion or exclusion of a single individual’s data does not significantly
affect the outcome of any analysis [5)]. By augmenting federated learning with differential privacy,
we can protect sensitive information while enabling collaborative model training.

2 Algorithm

Our algorithm, Differentially Private Federated Learning (DPFL), adopts the federated averaging
(FedAvg) framework [9] and assumes that there are m clients, and each client owns a private dataset
Dj, j € [m]. Each client trains a local model f; : X — ) via the differentially private stochastic
gradient descent (DP-SGD) algorithm [1]] to predict carbon footprints based on their local data. These
local models f;,i € [m], are then aggregated to produce a final global model f. In the simplest
case, this would be equivalent to aggregating a table of characterization factors from many small and
potentially overlapping datasets, using noise to mask which factors came from which source.

The framework consists of two key components: a global server that coordinates model updates and
multiple clients that independently train local models. At the start of each communication round, the
server sends the global model to the clients (in the first round, the central server randomly initializes
the global model). Each client then trains its local model using the LocalTrain procedure, which uses
DP-SGD to learn in a privacy-preserving manner. We set an overall desired privacy budget in terms
of (e, d), where e controls the privacy loss, with smaller values indicating stronger privacy guarantees,
while § accounts for a small probability of privacy violation. Then, if we run the algorithm for
m clients over T' rounds, by the basic composition rule in [5]], we can enforce each LocalTrain
subroutine to consume a privacy budget of (¢/7'm,d/T'm). Each client computes per-example
gradients for mini-batches of its local dataset. These gradients are clipped to a predefined norm C' to
limit the sensitivity of updates, ensuring that no single data point disproportionately influences the
result. Gaussian noise, scaled by the sensitivity and the desired privacy level, is then added to the
averaged gradients. The noisy gradients are sent to the server to refine the global model.

Our proposed DPFL algorithm extends and modifies existing approaches to federated learning with
differential privacy. Traditional DP-FedAvg algorithms, such as the one in [10], typically add noise
to the aggregated model updates at the central server, thereby achieving global differential privacy.
However, this approach assumes trust in the central server and fails to provide privacy guarantees at
the client level. In contrast, our algorithm applies noise at the client level using DP-SGD, ensuring
local differential privacy and eliminating the need for a trusted server. This design choice aligns with
the framework of DP-FedSGD, where noise is added at the client level. However, unlike DP-FedSGD,
which sends noisy updates after training on a single batch of data, our method allows clients to
train for multiple local epochs before communicating with the server. This modification reduces the
communication overhead and improves the performance significantly.



Algorithm 2 LocalTrain

Input: Initial model 0, local dataset D, number of local epochs F, learning rate 7, target privacy
budget (e, d)
Output: Noisy gradient update g
Initialize gradient accumulator: g = 0
Compute clipping norm C' and noise scale o for the target privacy level (e, )
for epoche=1,...,FE do

for each mini-batch By,...,B; C D do

Compute per-example gradients: {g,},es = V{(6; B)

Clip the gradients: g; < ¢;/ max (1, %) forallj € B
Compute the batch average gradient: gp = \Tln > jeB Y9j
Accumulate gradients: g <— g + gp
end for
end for
Add Gaussian noise: § = % + N (0,0°C?I)
Return ng

3 Experiments

3.1 Data and tools

To evaluate our approach, we use real-world processes from TianGong (https://www.tiangong!
earth/), an open-source database for Life Cycle Assessment that includes over 10,000 unit processes
and inventories. We match materials from TianGong processes to entries in the open emission factor
database collected from https://nexus.openlca.org/databases. This table comprises carbon
emission factors measured in kgCO2 equivalent per unit for various inputs, including reagents,
transportation, materials, processes, and energy. We perform this matching to ensure that different
processes maintain the same dimensionality (n = 557), allowing for consistent training, testing, and
analyses. We selected those processes in which all inputs align with our table of materials and their
carbon emission factors. This results in 508 processes with specified input material quantities. A
total of 97 materials from the factor table are identified as inputs in these real processes. We calculate
the total carbon footprint of each process using the emission factor table. For instance, if material 1
and 2 have input quantities  and y with emission factors a and b, the ground truth label is ax + by.
When units differ between sources (e.g., mass vs. energy), we use appropriate conversions. We
split the dataset as follows: 80% of the data (407 samples) is used for training within the federated
learning framework (split evenly across the m = 3 clients), while the remaining 20% (101 samples)
is reserved for testing.

We used Google Colab’s runtime with an Intel(R) Xeon(R) CPU @ 2.20GHz. The Python environ-
ment was based on Python 3.10 with PyTorch 2.5.1. Since the experiment is performed as a proof
of concept to demonstrate the validity of the proposed DPFL algorithm, we only ran 7" = 1 round.
In the LocalTrain subroutine, each client constructs a multilayer perceptron network with identical
architecture for conducting regression on their respective input datasets. The fully-connected network
comprises three layers, wherein the hidden layer is structured with a dimension of 500. Subsequent to
local training by each client, the model parameter updates are aggregated and averaged to obtain the
final model. The Opacus package [12] was used to determine the clipping norm C' and noise scale o
under a fixed privacy budget for each client.

3.2 Results

After obtaining our final model which aggregates updates from 3 locally trained models, we then
evaluate the final model on the reserved test data, measuring its performance using the R? score:

iy — flxi)?
Zi(yi —7)?

where 7 indexes the samples in the test dataset, f(x;) is the predicted emission value and § represents
the mean of the true emission values {y;}. This R? score quantifies how well our predicted emission
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Table 1: Model performance comparison for varying e values with fixed 6 = 10~%. The first three
columns represent the R? scores of the local models for clients 1, 2, and 3, each trained with a privacy
budget of ¢/3 and 6 = % -10~%. The fourth column presents the R? score of the aggregated model
obtained via DPFL, using a total privacy budget of €. The last column presents the R? score of the
baseline model, trained on the fully aggregated data with the same overall privacy budget of ¢.

e R*1) R*2) R?(3) R%*agg) RZ*(baseline)

1.5 09775 0.8150 0.4637 0.7709 0.9039
3 0.6969 0.7240 0.8734  0.8976 0.9852
15 09952 09464 0.9917  0.9608 0.9947
30 09990 0.9853 0.9910 0.9789 0.9954

outputs correlate with the actual emission outputs. We compare the performance of DPFL against
both the individual models and a baseline model trained on the full dataset — an approach that is
typically impractical in practice due to the need for raw data aggregation. Note that both the DPFL
model and the baseline model are allocated the same privacy budget to ensure a fair comparison. Our
results are presented in Table

The first three columns show the R? values for models trained locally on small datasets with a privacy
budget of ¢/3, where performance can be highly variable. Notably, at ¢ = 1.5, one local model
achieves a particularly poor R? of 0.4637, suggesting that individual local models may struggle due
to limited data and privacy constraints. However, our federated learning approach mitigates this
issue by aggregating the local models, as reflected in the fourth column (R2(agg)), where the final
aggregated model via DPFL achieves a much-improved R? of 0.7709. This result illustrates that
federated learning helps correct for poor individual models, leading to a more robust overall model.
Moreover, at € = 3 and above, the aggregated models show high fidelity and utility, with R? of 0.9 or
higher.

Finally, aggregating models inherently loses some accuracy compared to aggregating raw data before
training, as the latter allows for better optimization and learning directly from a unified dataset.
However, at ¢ = 15, a value similar to that used by private smart keyboard and census applications,
R?(agg) is within 5% of R?(baseline). This result suggests that while federated learning sacrifices
some accuracy for privacy and decentralization, it still achieves strong overall performance, making
it a promising privacy-preserving alternative.

Conclusion and impact

This work leverages federated learning and differential privacy to enable privacy-preserving collabo-
ration for building large models used in carbon footprint analysis and Life Cycle Impact Assessment
(LCIA). Results on real-world processes show strong predictive performance, with an epsilon value
of 15 striking a balance between privacy and accuracy, achieving less than 5% degradation compared
to non-private models. By safeguarding sensitive data while fostering global collaboration using
algorithms with relatively little computational overhead, this approach supports more accurate and
representative environmental insights. The potential societal impact includes advancing sustainable
practices by scaling data availability, enabling data-driven decision-making for hot spot identification
and product life cycle sustainability while ensuring data privacy and security.
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