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Climate change and global warming amplify hydroclimatic extremes, TC-GTN combines temporal convolution and graph Our proposed TC-GTN consistently outperforms baseline models (GTN and LS-GTN) across most stations and prediction
leading to more frequent and severe floods that threaten human transformers to capture both temporal dynamics and spatial horizons. Temporal convolutional layers enhance feature extraction, improving long-horizon forecasts and low-flow
lives, ecosystems, and critical infrastructure [1]. In this context, dependencies in river networks. station accuracy, with average gains of ~11.6% RMSE, 16% MAE, 40.4% MAPE, and 21% R? over the best baseline. In
reliable streamflow forecasting is essential for early warning It includes three key components: high-flow scenarios (>75th percentile), TC-GTN also reduces errors (~6—10%) and provides more stable predictions,

systems. Moreover, accurate discharge predictions support more Temporal Encoder: 1D convolutions extract short-term highlighting its advantage over baseline models.
effective planning and real-time management of hydropower plant patterns from each station’s time series and project them into
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conditions. By combining temporal convolution with graph Decoder: A two-layer feedforward network maps node
transformers, TC-GTN provides robust and interpretable hydrological embeddings to multi-step streamflow forecasts.
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predictions, supporting climate adaptation strategies, enhancing Graph Structured
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Layers
« A quantile loss targeting high-flow events critical for flood prediction el ; Gra;hTr eJi!nsformer |
MaxPool l‘ Dense
Def]se LayeiNOFm Graoh Sl . TC-GTN model demonstrates robust performance for high-flow events critical for
Graph Structure 1 ReLu Orip : t;”Ct“ret predicting extreme hydrological events such as floods. High model accuracy supports
The study area is modeled as a graph with meteorological and BT SEm HpUL - rorecas efficient hydropower plant operation, up to 5 days in the future, providing smart,
hydrological stations as nodes. Three edge types capture spatial | green-energy framework.

dependencies: Meteo-Meteo (undirected) for weather correlations,
Meteo-Hydro (directed) for meteorological influence on discharge,
and Hydro-Hydro (directed) for downstream flow propagation.

Figure 2 Architecture of the TC-GTN model

Datasets & Experimental
Setup

The dataset comprises daily time series from 10
hydrological and 22 meteorological stations
in the Drina River basin (Southeastern Europe).
Meteorological stations record mean daily
temperature and precipitation, while hydrological
stations measure river discharge, totaling V =
54 nodes. The dataset spans the period from
1968 to 2018 and is divided into training (1968—
2015), validation (2016), and test sets (2017-
2018). The temporal input sequence spans 7
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Figure 1. Graph representation of the Case Study (Drina River Basin): blue nodes denote hydrological nodes arX|v2009 03509
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