
TC-GTN: Temporal Convolution Graph Transformer
Network for Hydrological Forecasting

Ana Samac
ana.samac@ivi.ac.rs

Milan Dotlic
milan.dotlic@ivi.ac.rs

Luka Vinokic
luka.vinokic@ivi.ac.rs

Milan Stojkovic
milan.stojkovic@ivi.ac.rs

Veljko Prodanovic
veljko.prodanovic@ivi.ac.rs

The Institute for Artificial Intelligence Research and Development of Serbia
21000, Novi Sad, Serbia

Abstract

Machine learning enables accurate streamflow forecasting, vital for managing
increasingly frequent flood events under climate change. However, most existing
approaches do not fully exploit the inherent directional and hierarchical graph
structure of hydrological systems. This paper introduces TC-GTN (Temporal Con-
volution Graph Transformer Network), a hybrid model designed for streamflow
forecasting that integrates temporal convolution (TC) with graph transformers
(GT). It uses the combination of TC for temporal pattern extraction and GT for
advanced relational reasoning. It utilizes a structured graph representation of the
river network with accompanying meteorological stations where the transformer’s
attention mechanism is critical for a better understanding of interactions between
different nodes/stations and for capturing self-dependencies within each station.
Experiments on the Drina–Lim River Basin dataset show that TC-GTN model
outperforms baseline methods for regular flow rates, and also demonstrate im-
provements for high flow rates, which represent extreme hydrological events.
Such performance is critical for effective flood risk mitigation and sustainable
hydropower management under climate change effects. Code is available at:
https://github.com/dodi007/TC-GTN-Spatio-temporal-Graph-Transormer.git.

1 Introduction and related work

Reliable streamflow forecasting and early warning systems are essential for modern water resource
management, especially in the context of climate change, where extreme hydrological events such
as floods pose severe risks to lives, infrastructure, and ecosystems (Martinez-Villalobos and Neelin,
2023; Rodell and Li, 2023). Beyond flood risk mitigation, streamflow forecasting supports more
effective planning and real-time management of hydropower plant operations by enabling optimal
water use, grid stability, and greater renewable energy integration. Thus, improved streamflow
forecasting not only supports disaster preparedness but also plays a key role in the sustainable
production and management of green energy (Rolnick et al., 2022).

Machine learning has transformed time series forecasting, enabling models to capture complex
temporal patterns more effectively than traditional physics-based models. Common architectures
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include recurrent neural networks (RNNs) (Connor et al., 1994; Chang et al., 2014), temporal
convolutional networks (TCNs) (Wan et al., 2019; Xu et al., 2021), graph neural networks (GNNs)
(Farahmand et al., 2023; Jin et al., 2024), and transformers (Nie et al., 2022; Wen et al., 2022). Recent
studies (Granata et al., 2024; Koya and Roy, 2024; Vinokić et al., 2025) show that TCNs outperform
LSTMs and Temporal KAN models (Vinokić et al., 2025), while transformer-based architectures
with attention mechanisms (Granata et al., 2024) and temporal fusion(Koya and Roy, 2024) achieve
superb performance, especially for long-term predictions.

For streamflow forecasting in river basins with both temporal and spatial patterns, GNNs and their
hybrids with temporal and transformers architecture have gained prominence (Farahmand et al., 2023;
Ng et al., 2023; Roudbari et al., 2024; Zhang et al., 2024). Studies have shown that integrating spatial
and temporal models outperforms those that do not consider both spatial and temporal attention,
especially for flood forecasting (Feng et al., 2019; Ding et al., 2020; Liu et al., 2021). Combining
GNNs with transformers and attention mechanisms further enhances spatio-temporal dynamics and
latent causal modeling (Shi et al., 2020, 2023; Jiang et al., 2024). Representative examples, such as
TFM-GCAM (Chen et al., 2024), Trafformer (Jin et al., 2023), and STGA-Former (Geng et al., 2024),
capture complex spatio-temporal dependencies and achieve state-of-the-art performance.

However, most existing approaches do not fully exploit the inherent directional and hierarchical graph
structure of hydrological systems that combine meteorological stations, which measures precipitation
and temperature with hydrological stations and form distinct types of nodes and edges. Further, usually
proposed spatio-temporal forecasting models combine either GNN with temporal machine learning
model or GNN with transformer. This paper proposes a novel TC-GTN (Temporal Convolution
Graph Transformer Network) architecture, a unified spatio-temporal model that addresses whole
hydrological system with meteorological measurements for streamflow forecasting and combines
graph transformer with additional temporal convolution to further improve the extraction of temporal
patterns. Key contributions are: 1) A structured graph representation explicitly modeling three
hydrological relationships via a static adjacency matrix for domain-aware message passing. 2) A
hybrid architecture combining the temporal convolution with relational reasoning and positional
encoding strengths of graph transformers and with residual connections to jointly learn temporal and
spatial patterns. 3) A quantile loss targeting high-flow events critical for flood prediction.

2 Methodology

2.1 Graph structure

The study area is represented as graph G = (V,E), where nodes V are meteorological and hydro-
logical stations, and edges E encode spatial and directional relationships. The spatial connectivity
between nodes is encoded in a static adjacency matrix A ∈ {0, 1}V×V , where Aij = 1 indicates
a link from node i to node j. Three different types of edges are defined to represent spatial and
directional relationships in the network. Meteo-Meteo undirected edges connect meteorological
stations to capture spatial correlations in weather patterns. Meteo-Hydro directed edges link meteo-
rological stations to hydrological stations, representing the influence of precipitation and temperature
on discharge. Hydro-Hydro directed edges connect hydrological stations according to the direction
of river flow, capture the downstream propagation of discharge. This graph structure enables explicit
modeling of spatial dependencies.

2.2 TC-GTN model architecture

The architecture of TC-GTN model consists of three main components: a temporal encoder based
on 1D convolution, a graph transformer module based on the graph transformer operator, and a
feedforward decoder.

Temporal encoder processes the input tensor. Each node’s time series is processed independently
using a sequence of 1D convolutional layers followed by a max pooling operation and a linear
projection that transforms the output of the temporal encoder into a shape suitable for input to the
graph transformer.

Graph transformer models spatial dependencies using a stack of Graph Transformer layers (Shi
et al., 2020). For each node and its neighbors, the model learns to represent their features as queries
and keys through trainable transformations. These representations enable the computation of attention

2



scores that measure the importance of neighbors relative to the node in question. The model calculates
attention weights that quantify how much influence each neighboring node should have when updating
a node’s representation. Instead of using a single attention mechanism, multiple "heads" are used
in parallel to capture different types of relationship or aspects of the data. The multi-head attention
score between nodes for each edge of every head is calculated and normalized with softmax function.
The contributions from these heads are then combined by averaging to maintain consistent feature
dimensions throughout the layers.

Decoder maps the learned spatio-temporal node representations into the target prediction space, i.e.,
forecasting the future values for each node. It consists of a two-layer fully connected feedforward
neural network with a ReLU activation between. This design allows the model to learn a non-linear
mapping from the high-dimensional node embeddings to the desired forecast horizon.

The complete architecture of the proposed model is shown in Figure 1a.

3 Experimental setup

3.1 Dataset: Drina River basin

The data set consists of daily time series data collected from 10 hydrological stations and 22
meteorological stations located in the Drina River basin in Southeastern Europe. Each meteorological
station records the mean daily temperature [◦C] and the total daily precipitation [mm], while each
hydrological station measures the daily flow of the river [m3/s]. This results in a total of V =
22× 2 + 10 = 54 nodes, accounting for two variables per meteorological station. The location and
layout of the Drina River basin, along with its corresponding graph structure, are shown in Figure 1b.
The temporal input sequence has a length of 7 days. For the hydro nodes, it consists of the previous
7 days and for the meteo nodes that sequence has values for the 2 previous days and 5 future day
values, resulting in a total sequence length of 7 days. The dataset spans the period from 1968 to 2018
and is divided into training (1968–2015 for a total of 17525 samples), validation (2016 for a total of
366 samples), and test sets (2017-2018 for a total of 725 samples). All input data are normalized
using a Min-Max scaler to avoid extreme values.

(a) TC-GTN architecture (b) Drina River basin

Figure 1: a) Architecture of the TC-GTN model and b) Graph representation of the Drina River
Basin: blue nodes denote hydrological stations, red nodes represent meteorological stations, and
edges (varying by type) indicate connections.

3.2 Baselines

To evaluate the effectiveness of the proposed model architecture, we conducted a comparative analysis
against two baseline models: (1) a Graph Transformer model without any temporal encoder (GTN
model) and (2) a Graph Transformer combined with an LSTM temporal encoder (LS-GTN model).
In all experiments, identical settings for the Graph Transformer component are maintained. This
ensured a fair comparison by isolating the impact of different temporal encoders.
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To comprehensively assess the performance of our TC-GTN forecasting model, we employed four
commonly used regression evaluation metrics: Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE), R-squared Score (R²), and Mean Absolute Percentage Error (MAPE). Given the nature
of our application, forecasting river discharge levels with a particular emphasis on flood risk, we also
compute these metrics on values belonging to the fourth quantile (values above the 75th percentile).
This filtering ensures that the evaluation focuses on the most critical events where accurate predictions
are essential for timely and effective flood management.

All of the models are trained for up to 500 epochs using the Adam optimizer with early stopping
applied. For the loss function we used the quantile loss which proved effective in targeting flood
events, often treated as outliers by traditional loss functions like MSE.

4 Results & discussion

Our proposed model, TC-GTN, consistently outperforms the baseline methods (GTN and LS-GTN)
across most stations and prediction intervals. Even in scenarios where LS-GTN shows marginally bet-
ter performance on the first or second prediction day, TC-GTN excels on longer horizons, highlighting
the benefit of adding temporal convolutional layers to enhance feature extraction beyond GTN’s graph
transformer mechanisms. This supports recent findings (Zeng et al., 2023) that transformers alone
are less effective for time series forecasting and shows that integrating time series–specific modules
significantly boosts performance. On average, TC-GTN achieves an error reduction of approximately
11.63% in RMSE, 16% in MAE, 40.35% in MAPE, and an improvement of 21.02% in R² compared
to the best performing baseline (See Table 1 in the Appendix for full comparison). This trend is
particularly evident in low-flow stations where the baselines struggle. These stations (3,4 and 5) have
flow levels around 100 m3/s, compared to up to 3500 m3/s at other stations, and pose challenges
for GNNs alone due to the relatively small error margin, but not so much for TC-GTN. This aligns
with findings that extracting distinct temporal features improves forecasting in complex time series
and outperforms convolution-only or transformer-only approaches (Liu et al., 2022).

Furthermore, we also examined the performance specifically for flow rates above the 75th percentile,
focusing on high-flow scenarios that increase flood risks. This results also show that TC-GTN
achieves average error reduction of approximately 6.87% in RMSE, 8.83% in MAE, 10.39% in
MAPE, and an improvement of 6.05% in R² compared to the best performing baseline (for full
comparison see Table 2 in the Appendix). Figure 2 confirms that TC-GTN consistently outperforms
baselines, especially during high-flow (95–99 percentile) events. With lower median APE, less
variability, and fewer extreme errors, TC-GTN delivers more accurate and stable predictions.

Limitations of the proposed approach are the temporal resolution of the data. Although we used daily
data, higher-frequency data (e.g., hourly) would likely improve the model’s efficiency in capturing
rapid streamflow changes. Another limitation is the need for expert knowledge in hydrology to model
the graph structure and define connections, as the node linking process is not automated. Automating
this process based on topological features would be a valuable next step, as each new case study
currently requires a manually designed graph.

5 Conclusion

In this paper, we propose a novel TC-GTN model for streamflow forecasting that combines temporal
convolutions, graph transformers, attention mechanism and residual connections, to jointly model
spatial and temporal dependencies and improve extreme event prediction. Experiments show notable
error reductions over baselines and strong performance on high-flow events, enabling reliable flood
forecasting, efficient hydropower operation, and sustainable water management, capabilities that are
increasingly vital as climate change intensifies extreme hydrological events.
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Figure 2: Comparison of APE distributions for different models (TC-GTN, LS-GTN, GTN) over a
five-day forecast period across ten hydrological stations. The 95-99 percentile range, indicating high
streamflow events, is highlighted.
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Table 1: Model comparison (GTN, LS-GTN and TC-GTN) for the streamflow forecasting across
multiple metrics.

Station Day MAE RMSE R² MAPE
GTN LS-GTN TC-GTN GTN LS-GTN TC-GTN GTN LS-GTN TC-GTN GTN LS-GTN TC-GTN

Station 1

1 7.84 7.37 5.75 16.12 16.35 13.92 0.949 0.947 0.962 0.112 0.109 0.070
2 10.27 9.36 8.28 21.82 19.91 19.99 0.906 0.921 0.921 0.137 0.131 0.102
3 11.59 10.43 9.85 24.21 21.21 20.97 0.884 0.911 0.913 0.157 0.148 0.126
4 11.86 11.42 10.79 23.38 22.60 21.78 0.892 0.899 0.906 0.164 0.160 0.141
5 12.40 12.14 11.32 23.52 22.83 22.25 0.890 0.897 0.902 0.176 0.170 0.150

Station 2

1 8.02 7.26 5.46 15.36 13.83 11.91 0.956 0.964 0.974 0.129 0.113 0.067
2 10.59 9.94 8.02 21.62 20.08 18.12 0.913 0.925 0.939 0.148 0.133 0.095
3 12.11 11.10 9.88 24.30 22.10 19.88 0.890 0.909 0.926 0.161 0.147 0.121
4 13.02 12.44 10.76 24.64 24.27 21.27 0.887 0.890 0.916 0.174 0.159 0.135
5 14.39 13.89 11.41 27.25 26.77 22.85 0.861 0.866 0.903 0.191 0.172 0.145

Station 3

1 3.35 3.16 1.84 6.32 4.99 3.49 0.599 0.751 0.878 0.704 0.697 0.346
2 3.98 3.89 2.41 8.55 7.17 5.12 0.268 0.485 0.738 0.741 0.756 0.384
3 4.52 4.68 2.94 9.64 9.63 6.74 0.070 0.072 0.546 0.794 0.832 0.438
4 4.99 5.22 3.31 10.34 10.65 7.68 -0.069 -0.135 0.410 0.833 0.894 0.474
5 5.73 5.74 3.85 12.35 11.54 8.69 -0.525 -0.331 0.245 0.902 0.952 0.509

Station 4

1 3.42 3.17 1.93 5.36 4.74 3.73 0.813 0.854 0.909 0.542 0.526 0.242
2 4.01 3.89 2.54 7.09 6.76 5.46 0.673 0.703 0.806 0.579 0.567 0.276
3 4.36 4.61 3.04 7.80 8.92 6.95 0.604 0.482 0.686 0.616 0.615 0.321
4 4.60 5.09 3.39 8.06 9.74 7.68 0.578 0.384 0.617 0.641 0.659 0.357
5 5.25 5.62 3.87 10.10 10.63 8.18 0.338 0.266 0.565 0.693 0.720 0.397

Station 5

1 4.19 2.96 2.03 6.05 4.12 3.40 0.789 0.902 0.933 0.584 0.479 0.237
2 4.12 3.30 2.51 6.26 5.12 4.53 0.774 0.849 0.882 0.587 0.503 0.264
3 4.26 3.79 2.97 6.66 6.21 5.45 0.744 0.778 0.829 0.622 0.558 0.309
4 4.24 4.07 3.34 6.72 6.73 6.11 0.740 0.739 0.785 0.632 0.596 0.352
5 4.55 4.40 3.63 7.58 7.21 6.71 0.669 0.701 0.741 0.658 0.633 0.385

Station 6

1 13.41 12.48 11.15 28.38 27.08 25.56 0.800 0.818 0.838 0.373 0.284 0.235
2 15.63 15.01 13.91 32.20 30.91 30.63 0.742 0.763 0.767 0.422 0.360 0.316
3 15.62 15.07 14.01 30.00 28.69 27.92 0.776 0.795 0.806 0.441 0.381 0.341
4 15.91 15.34 14.14 28.69 28.14 26.89 0.796 0.803 0.820 0.458 0.401 0.356
5 17.05 15.66 14.33 30.15 28.03 27.40 0.774 0.805 0.813 0.492 0.414 0.370

Station 7

1 38.60 36.08 33.75 55.50 52.81 47.04 0.934 0.940 0.953 0.203 0.183 0.165
2 48.89 48.03 43.39 69.67 70.82 64.59 0.896 0.892 0.911 0.247 0.240 0.208
3 55.01 52.32 48.69 76.81 74.48 69.91 0.873 0.881 0.895 0.275 0.264 0.237
4 56.24 51.83 49.95 76.41 72.46 69.59 0.875 0.887 0.896 0.288 0.271 0.251
5 54.91 53.91 51.83 74.64 76.21 72.95 0.880 0.875 0.886 0.291 0.278 0.256

Station 8

1 56.10 54.30 50.57 78.56 75.35 68.06 0.889 0.898 0.917 0.521 0.494 0.461
2 67.95 65.64 60.77 95.21 94.87 83.34 0.837 0.838 0.875 0.606 0.576 0.511
3 71.88 70.46 64.58 98.25 100.82 87.43 0.826 0.817 0.863 0.613 0.592 0.530
4 73.17 72.95 68.24 97.74 102.12 91.54 0.828 0.812 0.849 0.629 0.596 0.555
5 73.48 73.73 69.42 97.03 101.46 93.22 0.830 0.815 0.843 0.632 0.603 0.559

Station 9

1 58.93 52.44 49.00 89.02 72.36 69.49 0.877 0.919 0.925 0.257 0.233 0.208
2 79.41 73.90 68.91 119.84 101.27 95.93 0.777 0.841 0.857 0.341 0.324 0.277
3 88.50 85.60 76.27 130.50 117.06 103.81 0.735 0.787 0.833 0.387 0.381 0.316
4 89.52 89.82 79.75 123.96 121.48 107.89 0.761 0.770 0.819 0.397 0.392 0.329
5 88.43 91.94 81.88 117.94 123.62 110.60 0.783 0.762 0.809 0.397 0.401 0.336

Station 10

1 8.33 7.61 6.11 19.50 17.35 19.19 0.872 0.899 0.876 0.133 0.132 0.084
2 10.71 10.09 7.90 24.58 23.07 21.26 0.797 0.821 0.848 0.171 0.164 0.118
3 12.12 11.56 9.41 27.39 26.42 23.69 0.748 0.765 0.811 0.198 0.190 0.150
4 12.99 12.14 10.16 27.28 26.22 24.02 0.750 0.769 0.806 0.218 0.206 0.170
5 15.30 13.27 11.19 32.37 29.07 24.83 0.647 0.715 0.792 0.252 0.223 0.191
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Table 2: Model comparison for streamflow forecasting for filtered metrics (true values above 75th
percentile).

Station Day MAE 75% RMSE 75% R² 75% MAPE 75%
GTN LS-GTN TC-GTN GTN LS-GTN TC-GTN GTN LS-GTN TC-GTN GTN LS-GTN TC-GTN

Station 1

1 18.22 17.63 15.15 27.99 30.34 25.22 0.878 0.856 0.901 0.113 0.096 0.084
2 25.12 23.05 21.69 37.43 35.56 36.46 0.781 0.803 0.793 0.154 0.130 0.124
3 27.96 24.72 25.03 40.69 35.39 36.47 0.742 0.805 0.793 0.178 0.150 0.153
4 27.97 27.26 26.74 38.52 38.14 37.55 0.769 0.773 0.780 0.182 0.168 0.168
5 28.32 28.96 28.18 37.85 38.51 38.95 0.777 0.769 0.763 0.187 0.184 0.180

Station 2

1 17.56 14.65 13.87 27.12 25.00 21.85 0.890 0.907 0.929 0.101 0.080 0.078
2 25.49 23.57 21.17 37.37 36.32 32.90 0.792 0.803 0.838 0.153 0.132 0.121
3 30.38 26.53 25.55 41.91 38.52 35.20 0.738 0.779 0.815 0.187 0.158 0.154
4 31.67 30.80 27.09 42.29 43.18 37.38 0.733 0.722 0.792 0.196 0.188 0.167
5 34.29 34.73 28.22 46.74 47.66 40.13 0.674 0.661 0.760 0.206 0.209 0.175

Station 3

1 5.68 5.47 3.60 10.05 8.43 5.81 0.109 0.374 0.702 0.236 0.236 0.145
2 7.71 7.69 5.33 14.74 12.57 9.00 -0.914 -0.393 0.286 0.300 0.305 0.208
3 9.23 10.05 6.99 17.09 17.33 12.08 -1.575 -1.648 -0.287 0.355 0.383 0.268
4 10.52 11.53 8.23 18.41 19.30 14.31 -1.987 -2.284 -0.805 0.404 0.441 0.318
5 12.40 12.77 9.87 21.88 20.92 16.30 -3.221 -2.859 -1.343 0.473 0.491 0.377

Station 4

1 5.50 5.31 4.00 8.12 7.69 6.77 0.591 0.633 0.716 0.180 0.179 0.121
2 7.32 7.60 5.94 11.73 11.58 10.08 0.147 0.170 0.370 0.225 0.236 0.176
3 8.21 9.88 7.33 13.06 15.84 12.88 -0.057 -0.555 -0.028 0.245 0.295 0.215
4 8.98 11.19 8.30 13.86 17.48 14.38 -0.191 -0.894 -0.281 0.272 0.335 0.246
5 10.50 12.24 9.61 17.49 18.83 15.09 -0.897 -1.198 -0.412 0.311 0.370 0.286

Station 5

1 6.52 4.49 4.02 8.68 6.43 5.96 0.577 0.768 0.801 0.212 0.138 0.122
2 6.45 5.65 5.48 9.03 8.35 8.12 0.542 0.609 0.630 0.200 0.167 0.161
3 6.66 6.84 6.59 9.43 10.14 9.61 0.502 0.423 0.482 0.202 0.194 0.194
4 6.77 7.49 7.39 9.98 10.98 10.81 0.442 0.324 0.344 0.210 0.217 0.218
5 7.40 8.31 7.98 11.39 11.70 11.71 0.273 0.233 0.231 0.222 0.243 0.236

Station 6

1 26.00 26.95 24.94 47.20 47.83 45.53 0.542 0.530 0.574 0.160 0.161 0.145
2 31.49 32.26 31.10 52.53 51.78 53.76 0.433 0.449 0.407 0.204 0.204 0.188
3 31.55 32.24 30.80 48.68 48.29 48.65 0.514 0.521 0.514 0.212 0.215 0.195
4 31.21 32.46 30.50 45.20 46.06 44.95 0.580 0.564 0.585 0.212 0.218 0.195
5 33.44 32.89 30.62 47.96 46.55 46.51 0.528 0.555 0.556 0.235 0.225 0.202

Station 7

1 59.55 62.51 58.45 83.88 86.85 75.15 0.850 0.839 0.880 0.101 0.107 0.104
2 79.68 82.63 75.52 106.41 115.88 105.46 0.759 0.714 0.763 0.141 0.143 0.134
3 90.02 87.00 82.14 117.06 117.31 110.65 0.708 0.707 0.739 0.164 0.155 0.147
4 88.04 81.73 82.05 111.76 108.94 106.85 0.734 0.747 0.757 0.163 0.153 0.149
5 79.85 86.80 87.21 102.75 114.99 112.86 0.775 0.718 0.729 0.153 0.158 0.157

Station 8

1 70.63 69.46 63.46 99.70 97.82 84.07 0.797 0.804 0.856 0.114 0.115 0.106
2 87.78 87.06 83.97 118.93 123.59 111.64 0.711 0.688 0.745 0.145 0.146 0.141
3 94.18 98.22 92.27 122.15 136.76 120.31 0.695 0.618 0.704 0.159 0.167 0.158
4 : 93.23 103.46 98.01 116.62 139.65 122.74 0.722 0.601 0.692 0.157 0.172 0.168
5 91.57 102.55 96.88 113.38 133.63 124.46 0.737 0.635 0.683 0.157 0.173 0.164

Station 9

1 85.29 70.79 70.10 136.94 97.41 100.81 0.584 0.790 0.775 0.120 0.104 0.106
2 114.99 98.50 105.53 183.00 135.12 141.19 0.257 0.595 0.558 0.166 0.145 0.158
3 120.24 106.08 106.97 188.80 148.39 142.88 0.209 0.512 0.547 0.173 0.159 0.162
4 116.05 108.77 110.88 164.26 147.96 143.01 0.402 0.514 0.546 0.167 0.162 0.167
5 112.46 111.95 114.90 151.85 149.36 146.53 0.489 0.505 0.524 0.167 0.167 0.172

Station 10

1 23.01 18.95 18.66 37.84 33.67 38.68 0.774 0.821 0.764 0.197 0.151 0.138
2 30.20 27.10 23.23 47.06 43.25 41.02 0.651 0.705 0.735 0.276 0.233 0.188
3 32.95 30.50 25.49 50.06 46.84 42.63 0.605 0.654 0.714 0.306 0.275 0.215
4 33.97 31.24 26.10 49.02 45.45 42.29 0.621 0.674 0.718 0.322 0.289 0.228
5 40.09 34.22 28.40 59.14 52.23 44.14 0.449 0.570 0.693 0.363 0.311 0.256
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