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Abstract

Predicting precipitation maps is a highly complex spatiotemporal modeling task,
critical for mitigating the impacts of extreme weather events. Short-term pre-
cipitation forecasting, or nowcasting, requires models that are not only accurate
but also computationally efficient for real-time applications. Current methods,
such as token-based autoregressive models, often suffer from flawed inductive
biases and slow inference, while diffusion models can be computationally inten-
sive. To address these limitations, we introduce BlockGPT, a generative autore-
gressive transformer using batched tokenization (Block) method that predicts full
two-dimensional fields (frames) at each time step. Conceived as a model-agnostic
paradigm for video prediction, BlockGPT factorizes space–time by using self-
attention within each frame and causal attention across frames; in this work, we
instantiate it for precipitation nowcasting. We evaluate BlockGPT on two pre-
cipitation datasets, viz. KNMI (Netherlands) and SEVIR (U.S.), comparing it to
state-of-the-art baselines including token-based (NowcastingGPT) and diffusion-
based (DiffCast+Phydnet) models. The results show that BlockGPT achieves su-
perior accuracy, event localization as measured by categorical metrics, and infer-
ence speeds up to 31× faster than comparable baselines. Here there is the official
implemention of BlockGPT:https://github.com/Cmeo97/BlockGPT.

1 Introduction

Climate change is increasing the frequency and intensity of extreme rainfall worldwide, disrupt-
ing infrastructure and posing risks to life and property Alfieri et al. [2017], Martinkova and Kysely
[2020], Klocek et al. [2021], Czibula et al. [2021], Malkin Ondík et al. [2022]. This amplifies the
need for accurate, high-resolution short-term weather forecasting (nowcasting) Côté et al. [2015].
In operational early-warning chains Imhoff et al. [2020, 2023], short-range forecasts are typically
produced by numerical weather prediction (NWP) systems; however, for minute-to-hour lead times,
practical constraints—latency, update frequency, and effective resolution—can hinder the timing
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and localization of intense rainfall Bauer et al. [2015], Berenguer et al. [2012], Pierce et al. [2012].
Crucially, NWP and radar-based nowcasting are complementary: NWPs provide large-scale dynam-
ical context and longer lead times, whereas radar nowcasting leverages high-resolution observations
for within-event, local decision-making. Rainfall nowcasting classically denotes statistical/heuristic
extrapolation of real-time quantitative precipitation estimates (QPEs), exploiting radar’s fine spa-
tiotemporal resolution (often ∼1 km/5 min) and direct initialization from the latest observations
Overeem et al. [2009]. Methods include (i) field-based advection with stochastic evolution Seed
[2003], Bowler et al. [2006], Berenguer et al. [2011], Seed et al. [2013], Sokol et al. [2017], Ayzel
et al. [2019], (ii) object-oriented cell tracking Dixon and Wiener [1993], Han et al. [2009], (iii) ana-
logue approaches Atencia and Zawadzki [2014, 2015], and (iv) machine learning Shi et al. [2015],
Ravuri et al. [2021], Luo et al. [2021], Liu et al. [2022]. Community efforts such as pysteps
have consolidated and advanced these approaches in open source Pulkkinen et al. [2019]. Recent
work reframes radar nowcasting as a video prediction task, learning to propagate precipitation fields
over minute-to-multi-hour horizons with low latency Shi et al. [2015], Ravuri et al. [2021], Prudden
et al. [2020]. In practice, data-driven nowcasts guide local decisions at short leads (≈0–3 h), while
NWP supplies the large-scale dynamics for longer horizons and basin- to synoptic-scale planning
Bauer et al. [2015]. This perspective motivates modern generative sequence models for video pre-
diction. State-of-the-art (SOTA) approaches employ VQ-VAEs Van Den Oord et al. [2017], Meo
et al. [2024a], transformers Vaswani et al. [2017], Meo et al. [2024b], Bi et al. [2023], Yin et al.
[2024], and diffusion models Gao et al. [2023], Yu et al. [2024] to improve accuracy and efficiency.
Despite progress, long-term consistency, latency, and computational cost remain key challenges. To
address these limitations, we introduce BlockGPT, a transformer that models spatiotemporal rain-
fall dynamics via frame-level autoregression. By predicting entire precipitation fields at each step,
BlockGPT avoids the inductive biases and computational bottlenecks of token-level autoregression,
yielding more coherent predictions and faster inference. Our contributions are: (1) a generative
transformer that autoregressively predicts full precipitation fields, contrasting with prior token-level
approaches; (2) a comprehensive evaluation on SEVIR Veillette et al. [2020] and KNMI Overeem
and Imhoff [2020] showing state-of-the-art categorical skill and event localization, with inference
up to 31× faster than SOTA baselines.

2 Related Work

Early deep learning efforts for nowcasting relied on recurrent neural networks (RNNs) Rumelhart
et al. [1986] architectures to model temporal sequences. Models like ConvLSTM Shi et al. [2015]
and ConvGRU Shi et al. [2017] adapted RNNs designed for spatio-temporal data by replacing matrix
multiplications with convolutional operations. This line of work was extended by models such
as TrajGRU Shi et al. [2017], which improved motion tracking, and PhyDNet Guen and Thome
[2020], which embedded physical constraints by decomposing the latent space. DGMR Ravuri
et al. [2021] employed a Generative Adversarial Network (GAN) Goodfellow et al. [2014] with
spatial and temporal discriminators to improve forecast quality. More recently, diffusion models Ho
et al. [2020] have become prominent because of their stable training and high-fidelity generation.
Models like PreDiff Gao et al. [2023] perform denoising in a latent space to generate future frames.
However, it requires more than 30 days to be trained. In contrast, the proposed BlockGPT can be
trained in 1.5 hours. DiffCast+Phydnet Yu et al. [2024], a key baseline in our work, introduced a
residual diffusion approach where a base model predicts a coarse forecast and a diffusion model
learns to predict the stochastic residual. Transformers offer an alternative to recurrent models that
has been shown to be more stable, efficient, and scalable, leveraging self-attention to capture long-
range dependencies Vaswani et al. [2017], Meo et al. [2025]. MAU Chang et al. [2021], for example,
integrates motion cues through temporal aggregation, while Earthformer Gao et al. [2022] applies
cuboidal self-attention over radar volumes. Most closely related to our work is NowcastingGPT
Meo et al. [2024b], which tokenizes radar precipitation fields using a VQ-VAE Van Den Oord et al.
[2017] and autoregressively predicts them with a transformer decoder. However, the autoregression
in NowcastingGPT operates at the token level rather than in time, creating an ill-posed learning
problem that results in fragmented outputs and slow inference. To address these limitations, we
propose BlockGPT, a generative transformer model that predicts entire precipitation fields at once
in latent space, employing a block attention mask to enable bidirectional spatial attention within
each precipitation field while maintaining temporal causality across precipitation fields. Motivated
readers can also find a releted work section about video prediction architectures in appendix D.1.
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3 Methodology: BlockGPT Pipeline

Given a sequence of Tc context precipitation fields X1:Tc , with Xt ∈ RH×W , where H ×W is the
grid size of the rainfall fields, and the task is to predict the following T future precipitation fields.
The proposed BlockGPT pipeline, decomposes the prediction task into two stages: (1) compressing
precipitation fields into a latent token space, and (2) autoregressively modelling temporal dynamics.

Feature Exctraction Each precipitation field Xt is encoded using a VQ-GAN Esser et al. [2021],
which downsamples and discretises it into a grid of latent tokens T t ∈ RH′×W ′

. A detailed de-
scription of the employed VQ-GAN and its training procedure can be found in appendix C.
Dynamics Modeling Prior work such as NowcastingGPT Meo et al. [2024b] models temporal
evolution by flattening each grid T t into a 1D token sequence zt, and concatenating across time
zt =

(
z
(1)
t , z

(2)
t , . . . , z

(H′W ′)
t

)
, with the joint distribution factorised autoregressively as:

p(z) =

T ·H′W ′∏
i=1

p
(
z(i) | z(1), z(2), . . . , z(i−1)

)
. (1)

However, such formulation implicitly assumes a sequential correlation of all z(t), imposing a flawed
inductive bias. Indeed, the spatial tokens z(t) within a precipitation field are bidirectionally cor-
related and not naturally sequential. Treating them as a causal chain forces the model to predict
inherently co-dependent tokens autoregressively, which is an ill-posed modelling assumption and
leads to inefficient, suboptimal decoding. By contrast, we factorise the joint distribution as:

p(T ) =

T∏
t=1

p (T t | T 1, . . . ,T t−1) , (2)

where each T t is holistically modelled, preserving the original 2D structure that contains bidi-
rectionally correlated features. This distribution shift has several advantages, the first and most
important is fixing the flawed inductive bias - features are not anymore assumed to be sequentially
correlated. Secondly, the autoregression step is performed at the actual time scale, which allows the
model to learn a meaningful time dependent dynamics. Finally, inference is H ′W ′ times faster by
design, since we can now infer a complete T t with a single forward pass. It is important to note
that, during training and inference, we use block attention masks - spatial tokens within a precipita-
tion field are allowed to attend bidirectionally, while temporal attention is strictly causal. This design
more naturally aligns with the spatiotemporal structure of precipitation: radar maps require full-field
spatial modeling, whereas future precipitation fields should depend only on the past context.

4 Experiments

We evaluate all models on the task of nowcasting, where the goal is to predict the next 6 radar
precipitation fields given 3 context precipitation fields. Each precipitation field represents 30 minutes
of precipitation, resulting in a forecast horizon of 3 hours. Experiments are conducted on two real-
world radar datasets: the Dutch KNMI dataset Overeem and Imhoff [2020] and the SEVIR dataset
Veillette et al. [2020] from the United States. Appendix A presents analyses of the considered
datasets, providing a detailed overview of the datasates statistics. We benchmark BlockGPT against
NowcastingGPT Meo et al. [2024b] and DiffCast+Phydnet Yu et al. [2024]. To the best of our
knowledge, the former is the current state-of-the-art discrete token-based autoregressive model for
precipitation nowcasting in the KNMI dataset, while the latter exemplifies the residual diffusion
paradigm Yu et al. [2024] and is the state-of-the-art in the SEVIR dataset. We report quantitative
results in terms of four key metrics: Mean Squared Error (MSE), Pearson Correlation Coefficient
(PCC), Critical Success Index (CSI), and False Alarm Rate (FAR). Details about the experiments
can be found in Appendix E.

4.1 Results

In this section, we design empirical experiments to understand the performance of BlockGPT and its
potential limitations by exploring the following questions: (1) How does BlockGPT’s frame-level
autoregressive approach compare to token-level autoregression (NowcastingGPT) and diffusion-
based models (DiffCast+Phydnet) in terms of prediction accuracy and computational efficiency?
(2) What differences are there between autoregressive and diffusion-based generative behaviors?
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Figure 1: MSE, PCC, CSI, and FAR of BlockGPT and related baselines, on KNMI and SEVIR
datasets. Results are averaged across 3 seeds.

Block Autoregressive models are better nowcasters than diffusion models. Figure 1 presents
a comparative performance analysis of three models: Diffcast+Phydnet, BlockGPT, and Nowcast-
ingGPT on the KNMI and SEVIR datasets for forecast lead times up to 180 minutes. A consistent
performance hierarchy is evident across both datasets, all forecast lead times and all metrics, with
BlockGPT outperforming Diffcast+Phydnet and NowcastingGPT, with the only exception for MSE
and PCC evaluation on SEVIR where DiffCast+Phydnet performs the best (Diffcast + Phydnet: ∼
1250 → NowcastingGPT: ∼ 1450 → BlockGPT: ∼ 2100). However, BlockGPT shows superior
event-level detection performance as reflected in higher CSI and lower FAR values. Qualitative re-
sults can be found in Appendix B.1 and the percentile-wise continuous metrics in Appendix B.2. As
illustrated by the qualitative case studies in Appendix B.1, BlockGPT preserves storm morphology
and displacement more faithfully than the baselines across KNMI and SEVIR events (see Fig. 4,
5, 6, 7). On SEVIR, BlockGPT occasionally overestimates high intensity storm cells at longer lead
times—consistent with the continuous scores reported in App. B.2 (see Fig. 13), whereas on KNMI,
errors decrease toward over the leadtimes and PCC remains systematically higher (see Fig. 12).
BlockGPT is more robust than diffusion pipelines. To further evaluate model performance at
various rainfall intensities, we also report the Area Under the ROC Curve (AUC) over time for dif-
ferent precipitation thresholds on the KNMI dataset in Fig. 8. BlockGPT consistently outperforms
both baselines at all thresholds and time steps, demonstrating robustness in detecting precipitation
events of varying severity. Consistent trends are observed at the catchment scale in B.3, where AUC-
ROC computed for 1, 2, and 8 mm h−1 across +30 to +180 min lead times confirms that BlockGPT
maintains the highest detection skill across thresholds (Figure 8).

5 Conclusion

In this work, we introduced BlockGPT, a frame-level autoregressive transformer designed for precip-
itation nowcasting. By shifting the generative process from a token-by-token sequence to predicting
entire precipitation fields autoregressively, BlockGPT overcomes the flawed inductive biases and
computational bottlenecks of prior token-level models, resulting in a 31x faster inference speed than
its counterparts, as showed in Appendix G.2 and F. This approach enables the use of bidirectional
attention to capture complex spatial patterns within each frame while strictly maintaining temporal
causality across frames. Our comprehensive evaluation on the KNMI and SEVIR datasets demon-
strates that BlockGPT consistently outperforms state-of-the-art models on key categorical metrics,
including the CSI and Area Under the ROC Curve. This indicates a stronger ability to accurately
localize and predict precipitation events, particularly those exceeding critical intensity thresholds.
Future work could focus on enhancing fine-grained prediction accuracy, potentially by integrating
BlockGPT as a powerful backbone within a residual diffusion framework. Further research could
also explore the incorporation of physical constraints and the development of robust uncertainty
quantification methods to improve prediction reliability for critical decision-making.
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Remko Uijlenhoet, and Justin Dauwels. Precipitation nowcasting using physics informed discrim-
inator generative models. In 2024 32nd European Signal Processing Conference (EUSIPCO),
pages 967–971. IEEE, 2024. doi: 10.23919/EUSIPCO63174.2024.10715141.

Demin Yu, Xutao Li, Yunming Ye, Baoquan Zhang, Chuyao Luo, Kuai Dai, Rui Wang, and Xunlai
Chen. DiffCast: A Unified Framework via Residual Diffusion for Precipitation Nowcasting,
March 2024. URL http://arxiv.org/abs/2312.06734. arXiv:2312.06734 [cs].

Lijun Yu, José Lezama, Nitesh B Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong
Cheng, Vighnesh Birodkar, Agrim Gupta, Xiuye Gu, et al. Language model beats diffusion–
tokenizer is key to visual generation. arXiv preprint arXiv:2310.05737, 2023.

9

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://api.semanticscholar.org/CorpusID:227222587
https://api.semanticscholar.org/CorpusID:227222587
http://arxiv.org/abs/2312.06734


A Dataset Analysis

A.1 KNMI Dataset

The KNMI dataset contains radar-based precipitation estimates collected by two weather radars
located in the Netherlands Overeem and Imhoff [2020]. The data has a spatial resolution of 1 km2

and a temporal resolution of 5 minutes, covering the entire land area of the Netherlands. It spans the
period from 2008 to 2018, during which the radar infrastructure underwent a significant upgrade.

The raw measurements recorded by these radars are in the form of radar reflectivity, which quan-
tifies the amount of transmitted microwave energy reflected back after encountering precipitation
particles. Reflectivity values are converted to precipitation rates using a standard Z–R relationship,
given by:

Zh = 200R1.6,

where Zh is the horizontal radar reflectivity factor and R is the precipitation rate in mm/hr Marshall
et al. [1955].

The dataset is highly imbalanced towards low/no precipitation events. To address this, we retain only
those events with average precipitation above the 50th percentile for all subsequent experiments.
This subset includes data spanning from 2008 to 2018 and provides a more informative, balanced
foundation for model training and evaluation.
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Figure 2: Violin plots of event average precipitation in the KNMI dataset.

A.2 SEVIR Dataset

The SEVIR dataset, introduced in Veillette et al. [2020], is a machine-learning-ready resource that
aggregates multiple remote sensing modalities, including satellite and radar data. It consists of
4-hour weather events covering 384 km × 384 km regions across the continental United States,
sampled every 5 minutes. The spatial resolution is 1 km2 for most modalities, including Vertically
Integrated Liquid (VIL).

SEVIR provides five sensing modalities: three channels from the GOES-16 (Geostationary Oper-
ational Environmental Satellite) system Schmit et al. [2017], VIL measurements, and data from
the Geostationary Lightning Mapper (GLM) Goodman et al. [2013]. VIL, which is derived from
radar reflectivity, estimates the total liquid water content in a vertical column of the atmosphere and
is commonly used to assess intense precipitation events such as thunderstorms and hail National
Weather Service [n.d.]. For this study, we focus on the VIL modality.
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Figure 3: Violin plots of event average precipitation in the SEVIR dataset.
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B Extended Results

B.1 Qualitative Case Studies

We compare two representative events per dataset, each showing two input frames (t = −60 and
t = 0 min) and four forecast frames (t = +30,+60,+120,+180 min) from BlockGPT (ours),
NowcastingGPT (token-level autoregression), and DiffCast+Phydnet (diffusion-based), against the
ground truth.

KNMI. In Figure 4, BlockGPT captures the elongated rainband and its left-to-right advection, pre-
serving embedded convective cores and their growth. While peak intensity is slightly overestimated
at longer horizons, the morphology and displacement remain accurate. In contrast, NowcastingGPT
and DiffCast+Phydnet miss the band structure and misplace intense cells; the diffusion pipeline also
exhibits blobby artefacts and fails to recover the linear organisation. A similar pattern holds for the
more challenging convective case in Figure 5, where rapid growth and relocation of high-intensity
cells occur: BlockGPT reconstructs the evolving structure and localisation, whereas baselines strug-
gle with both evolution and displacement.

SEVIR. For the linear convective system in Figure 6, BlockGPT reproduces structure and propa-
gation more faithfully than both baselines. At far lead times, it tends to overestimate peak intensity,
consistent with the higher errors seen in the continuous metrics. In the circular/rotational case of
Figure 7, BlockGPT again tracks geometry and location best; baselines lose the organised shape.
Occasional overestimation of the high-intensity core at longer horizons aligns with our quantitative
findings on SEVIR.
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Figure 4: KNMI Event 1. Two input frames (−60, 0 min) and four forecasts (+30, +60, +120, +180
min). BlockGPT preserves the rainband morphology and advection but modestly overestimates the
core intensity at long lead times; baselines miss the shape and location.

12



G
ro

un
d 

Tr
ut

h

-60 min 0 min +30 min +60 min +120 min +180 min

Bl
oc

kG
PT

N
ow

ca
st

in
gG

PT
D

iff
ca

st
+

Ph
yd

ne
t

Figure 5: KNMI Event 2. BlockGPT follows the rapid structural changes and localisation of intense
cells across lead times; baselines underperform, particularly for growth and displacement.

B.2 Continuous Score Metrics across Percentile Levels

We evaluate continuous scores for aggregated data and across intensity-conditioned percentile bins
(0–20, 20–40, 40–60, 60–80, 80–95th).

KNMI. At low-percentile bins, BlockGPT shows relatively higher MSE/MAE than the baselines;
errors drop markedly toward higher-percentile bins where accurate prediction is operationally most
critical. Across all bins, PCC is consistently higher for BlockGPT. Aggregated over all intensities,
BlockGPT attains lower MSE/MAE and higher PCC than both benchmarks, indicating overall su-
periority. We also observe larger uncertainty across seeds for BlockGPT, attributable to the batched
tokeniser design which can amplify seed-to-seed variability. Aggregated behaviour is summarised
in Figure 12.

SEVIR. Across bins, BlockGPT yields higher MSE/MAE than the baselines due to its strong sen-
sitivity to high-intensity cores, which can be overestimated at longer lead times—incurring double-
penalty effects from both intensity and displacement errors. Nevertheless, PCC remains competitive
and typically exceeds DiffCast+Phydnet, indicating better spatial pattern fidelity despite larger am-
plitude errors. Aggregated trends are shown in Figure 13.

B.3 Catchment Analysis (KNMI only)

We assess event-detection skill over hydrologically critical KNMI subregions Imhoff et al. [2020]
using ROC and AUC-ROC at thresholds 1, 2, and 8 mm h−1 for lead times 30, 60, 90, 120, 150,
and 180 min. ROC curves are computed for each threshold; AUC summarises skill across false-
positive rates. As shown in Figure 8, BlockGPT consistently outperforms both NowcastingGPT
and DiffCast+Phydnet in AUC-ROC at all thresholds and lead times, evidencing robustness across
intensity and horizon. As expected, detection skill diminishes with increasing lead time for all
models, yet BlockGPT maintains the best performance across subregions. The ROC curves at a 1, 2
and 8 mmh−1 thresholds, stratified by lead time, are provided in Figure 9, Figure 10 and Figure 11.
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Figure 6: SEVIR Event 1 (linear system). BlockGPT best maintains structure and motion; a ten-
dency to overestimate peak intensity emerges at longer lead times.
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Figure 7: SEVIR Event 2 (circular organisation). BlockGPT best preserves the circular structure
and its evolution; baselines lose shape and localisation.
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Figure 8: KNMI catchments: AUC-ROC over lead time for thresholds 1, 2, and 8 mm h−1. Skill
declines with lead time for all methods, but BlockGPT dominates across thresholds and horizons.
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Figure 9: ROC curves across lead times for a 1 mm h−1 threshold on the KNMI (30 min) dataset.
Panels correspond to +30, +60, +90, +120, +150, and +180 min lead times. Curves are averaged
across seeds; performance improves as curves approach the top-left corner. Models compared:
BlockGPT, DiffCast+Phydnet, and NowcastingGPT.
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Figure 10: ROC curves across lead times for a 2 mm h−1 threshold on the KNMI (30 min) dataset.
Panels correspond to +30, +60, +90, +120, +150, and +180 min lead times. Curves are averaged
across seeds; performance improves as curves approach the top-left corner. Models compared:
BlockGPT, DiffCast+Phydnet, and NowcastingGPT.
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Figure 11: ROC curves across lead times for a 8 mm h−1 threshold on the KNMI (30 min) dataset.
Panels correspond to +30, +60, +90, +120, +150, and +180 min lead times. Curves are averaged
across seeds; performance improves as curves approach the top-left corner. Models compared:
BlockGPT, DiffCast+Phydnet, and NowcastingGPT.
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Figure 12: KNMI: Continuous metrics (MSE, MAE, PCC) by percentile bin (0–20, 20–40, 40–60,
60–80, 80–95th). BlockGPT exhibits superior PCC across bins; MSE/MAE reduce notably at higher
bins. Aggregated scores favour BlockGPT overall.
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Figure 13: SEVIR: Continuous metrics (MSE, MAE, PCC) by percentile bin (0–20, 20–40, 40–60,
60–80, 80–95th). BlockGPT shows elevated MSE/MAE due to overestimation of high-intensity
cores at long lead times, while maintaining favourable PCC relative to DiffCast+Phydnet.

C Model Architecture Details

C.1 VQ-GAN Training Details

The first stage of the BlockGPT pipeline compresses high-dimensional precipitation maps into a
compact, discrete latent representation. For this, we employ a Vector Quantized-Generative Ad-
versarial Network (VQ-GAN) Esser et al. [2021], which leverages an encoder-decoder framework
with a discrete codebook Z , and a discriminator D, that discriminates between reconstructed and
ground truth images. The encoder maps an input precipitation map x into a lower-resolution grid
of feature vectors, preserving essential spatial information by reducing spatial dimensions while
increasing feature channels. Specifically, the encoder consists of 5 downsampling layers, each con-
taining 2 ResNet blocks, which progressively reduce the spatial resolution from 128 × 128 down
to 8 × 8. The final stage of the encoder includes an attention block to better capture global feature
relationships before quantization.

Each feature vector ẑ = E(x) is then mapped to its closest entry in the learned codebook Z via an
element-wise quantization step q(·):

zq = q(ẑ) :=

(
argmin
zk∈Z

∥ẑ − zk∥
)
.

This process yields a grid of discrete latent tokens zq for each input frame. The decoder, which
mirrors the encoder’s architecture, then reconstructs the precipitation map x̂ = Dec(zq) from these
quantized tokens. The VQ-GAN is trained by optimizing a combination of reconstruction, commit-
ment, and perceptual losses to ensure both high-fidelity reconstruction and a well-structured latent
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space:

LVQ-VAE = ∥x− x̂∥22 + β ∥sg[E(x)]− zq∥22 + ∥sg[zq]− E(x)∥22 + Lperceptual(x, x̂), (3)

where sg[·] denotes the stop-gradient operator, and the commitment loss (the third term) is weighted
by a hyperparameter β. To ensure the generation of realistic maps, an adversarial loss from the
discriminator D is added. Therefore, the GAN Loss (LGAN) loss is given by:

LGAN = LVQ-VAE + λEx∼p(x)[logD(x) + log(1−D(x̂))] (4)

where the term λ is an adaptive weight calculated from the gradients of the perceptual and GAN
losses to balance their contributions during training.

D Extended Related Work

Precipitation nowcasting, a sub-field of spatio-temporal forecasting, presents unique challenges due
to the chaotic and stochastic evolution of weather systems. While traditional methods based on
physical principles, like the advection-based PySTEPS Pulkkinen et al. [2019], are well-established,
they often struggle to model complex, non-linear dynamics Ravuri et al. [2021]. In contrast, deep
learning (DL) models have demonstrated a remarkable ability to learn these patterns directly from
vast amounts of radar data Shi et al. [2015], Ravuri et al. [2021]. The shift of paradigm that led
DL models to succeed was casting precipitation nowcasting as a video prediction problem Bi et al.
[2023], Bai et al. [2022], Luo et al. [2021], where given an input spatio-temporal sequence of N
frames xin ∈ RN×H×W×C , H,W denote the spatial resolution and C represents the image channels
or the different type of measurements (e.g., radar, heat maps, etc), the goal is to predict the next
M frames xout ∈ RM×H×W×C . In this section we present the literature related to precipitation
nowcasting models, the main related field of this paper.

D.1 Video Prediction Architectures

A prominent architectural pattern in modern generative video modeling involves a three-stage pro-
cess: (1) a compression stage that encodes high-dimensional frames into a discrete latent space, (2)
a generation stage that models the dynamics of these latent representations, and (3) a diffusion step
that models the residuals that were not captured by the video prediction backbone.

The compression is typically handled by a Vector Quantized-Variational Autoencoder (VQ-VAE)
Van Den Oord et al. [2017], which learns a codebook of visual tokens. The generation is then per-
formed by a powerful sequence model, often an autoregressive Transformer Vaswani et al. [2017],
which learns to predict the next token in a sequence. This approach was popularized for general
video generation by VideoGPT Yan et al. [2021] and adapted for precipitation nowcasting by Now-
castingGPT Meo et al. [2024b]. These models typically flatten the 2D grid of spatial tokens into a
1D sequence and predict them one-by-one.

However, this token-level autoregression imposes a flawed inductive bias by assuming a causal,
sequential relationship between tokens that are spatially correlated. This creates an ill-posed learning
problem that can result in spatially fragmented outputs and suffers from slow inference speeds due
to its sequential nature Tian et al. [2024], Luo et al. [2024].

To address these limitations, recent works have shifted towards generating tokens in larger chunks
or in parallel. Some methods have explored non-autoregressive generation using masking strate-
gies Chang et al. [2022]. Our work is most closely related to the emerging paradigm of block-level
autoregression, where an entire block of tokens—or in our case, an entire frame—is predicted at
each time step Li et al. [2024], Yu et al. [2023]. This approach, explored in models like Next Block
Prediction Ren et al. [2025], allows for bidirectional self-attention within a frame to capture spatial
structures effectively, while maintaining a causal autoregressive structure across time to model tem-
poral evolution. By adopting this frame-level prediction strategy, BlockGPT aims to overcome the
efficiency and coherence issues of prior token-based nowcasting models.
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E Experimental Setup Details

E.1 Training Configuration

All models are trained with Adam (learning rate 1 × 10−4) using a 10,000-step warmup. Training
runs for 500,000 steps with batch size 8. Evaluation is performed on a held-out test set unused
during training/validation.

E.2 Evaluation Metrics

To assess the quality of predicted precipitation sequences, we employ continuous (value-based) and
categorical (event-based) metrics. Let an event be a sequence of T frames

X = {X1, . . . ,XTc ,XTc+1, . . . ,XT } = {Xcontext,Xtarget},
where Xt ∈ RH×W is the radar field at time t. Given predictions X̂target = {X̂Tc+1, . . . , X̂T } and
targets Xtarget = {XTc+1, . . . ,XT }, we define:

Continuous Metrics

These quantify Jolliffe and Stephenson [2003] amplitude accuracy over the full spatiotemporal do-
main.

Mean Squared Error (MSE). Penalizes large deviations quadratically; sensitive to outliers and thus
captures severe intensity errors.

MSE =
1

(T − Tc)HW

T∑
t=Tc+1

H∑
i=1

W∑
j=1

(
X̂t[i, j]−Xt[i, j]

)2
. (5)

Mean Absolute Error (MAE). Measures median-like deviation; robust to outliers and interpretable
in physical units.

MAE =
1

(T − Tc)HW

T∑
t=Tc+1

H∑
i=1

W∑
j=1

∣∣X̂t[i, j]−Xt[i, j]
∣∣. (6)

Pearson Correlation Coefficient (PCC). Assesses linear association and phase coherence indepen-
dent of bias and scale.

PCC =

∑
t,i,j

(
X̂t[i, j]− ¯̂

X
)(
Xt[i, j]− X̄

)√∑
t,i,j

(
X̂t[i, j]− ¯̂

X
)2 √∑

t,i,j

(
Xt[i, j]− X̄

)2 , (7)

where ¯̂
X and X̄ are means over all target pixels and times.

Categorical Metrics

These evaluate Jolliffe and Stephenson [2003]event detection (e.g., exceedance of a threshold τ ).
We binarize frames as

Ŷt[i, j] = 1
[
X̂t[i, j] ≥ τ

]
, (8)

Yt[i, j] = 1
[
Xt[i, j] ≥ τ

]
. (9)

Over all (t, i, j) in the target period, the contingency counts are

TP =
∑
t,i,j

1
[
Ŷt[i, j] = 1, Yt[i, j] = 1

]
, (10)

FP =
∑
t,i,j

1
[
Ŷt[i, j] = 1, Yt[i, j] = 0

]
, (11)

FN =
∑
t,i,j

1
[
Ŷt[i, j] = 0, Yt[i, j] = 1

]
, (12)

TN =
∑
t,i,j

1
[
Ŷt[i, j] = 0, Yt[i, j] = 0

]
. (13)
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Observed 1 (event) Observed 0 (no event)
Forecast 1 (event) TP (hit) FP (false alarm)

Forecast 0 (no event) FN (miss) TN (correct rejection)
Table 1: Contingency table for threshold-exceedance events.

Critical Success Index (CSI). Fraction of correctly predicted events among all observed or forecast
events; penalizes misses and false alarms.

CSI =
TP

TP + FP + FN
. (14)

False Alarm Ratio (FAR). Proportion of forecast events that did not occur; lower is better.

FAR =
FP

TP + FP
. (15)

Receiver Operating Characteristic (ROC) and AUC. The ROC curve Jolliffe and Stephenson
[2003], Pulkkinen et al. [2019] measures discrimination skill for threshold-exceedance events by
varying a decision threshold γ on forecast probabilities or continuous scores derived from the pre-
dicted frames and comparing to the observed binary targets in (9). For each γ, compute the hit rate
(probability of detection, POD) and the false-alarm rate (probability of false detection, POFD/FPR)
from the contingency counts in (10)–(13):

POD(γ) =
TP(γ)

TP(γ) + FN(γ)
, (16)

POFD(γ) =
FP(γ)

FP(γ) + TN(γ)
. (17)

Plotting POD(γ) against POFD(γ) yields the ROC curve; better discrimination pushes the curve
toward the upper-left corner (POFD = 0,POD = 1), indicating that predicted exceedances align
with observed exceedances while rarely triggering on non-events (i.e., high hits, few false alarms).
The area under the curve summarizes potential skill,

AUC =

∫ 1

0

POD
(
POFD

)
dPOFD, (18)

with AUC = 0.5 for no-skill and AUC = 1 for perfect discrimination; note that POFD in (17) is not
the same as FAR.

E.3 Statistical Significance

All scores are aggregated over 3 random seeds; where shown, shaded bands denote ±1 standard
deviation to convey sampling uncertainty.

F Model Parameters and Training Time

In this section, we summarize the training configurations and compute profiles of the three models
compared in this work. A key goal in our design of BlockGPT was to match or outperform the
benchmark models in terms of training time, while scaling model capacity up to the point of over-
fitting. The table below presents a comparison of parameter counts and training durations across all
models.

Our model, BlockGPT, was designed under the constraint of maintaining a training budget that is
no greater than that of our benchmarks. Within this constraint, we maximize model capacity by
increasing the number of parameters up to the point of overfitting or until the training time matches
that of the benchmarks. This approach ensures a fair and efficient comparison while allowing us
to explore the benefits of larger model capacity within realistic computational limits. We retain the
original model configurations of DiffCast+Phydnet and NowcastingGPT. For the latter, we retain the
same model parameters as those in the checkpoints in the github repository of Meo et al. [2024b].

20



Model Parameters Training Time Hardware / Epochs

DiffCast+Phydnet 49.35M ∼15 hours 2 × A100 GPUs / 20 epochs
NowcastingGPT 150M ∼6 hours 2 × A100 GPUs / 20 epochs
BlockGPT (Ours) 103.37M ∼6 hours 2 × A100 GPUs / 20 epochs

Table 2: Training time and parameter comparison across all models.

The embedding dimension however, was originally only 128. We therefore retrain with the same
embedding dimension as ours, for fair comparison.

BlockGPT’s model configuration is as follows:

Table 3: Essential architecture specifications for VQGAN and BlockGPT Transformer.
Component Parameter Value

VQGAN Codebook Size 1024
Latent Channels 128
Attention Resolution [8]
Dropout 0.2
Tokens per Frame 64

BlockGPT (Transformer) Number of Layers 8
Number of Heads 8
Embedding Size 1024
Token Block Size 576
Vocabulary Size 1024

G Implementation Details

G.1 Code Availability

The implementation of BlockGPT and all experimental code will be made publicly available upon
publication. The codebase includes training scripts, evaluation metrics, and pre-trained models for
reproducibility.

G.2 Computational Requirements

Training BlockGPT requires approximately 8 GPUs with 32GB memory each for 500,000 steps.
Inference can be performed on a single GPU, making it suitable for real-time applications.

A key advantage of BlockGPT is its computational efficiency. As shown in Table 4, BlockGPT is sig-
nificantly faster than both benchmarks. On the 30-minute task, it is 27× faster than NowcastingGPT
and 31× faster than DiffCast+Phydnet. On the 5-minute task, it is 31× faster than NowcastingGPT
and 10× faster than DiffCast+Phydnet. These results indicate that frame-level autoregression not
only improves performance but also greatly enhances computational efficiency.

Model Inference Time (s)

NowcastingGPT 7.09
DiffCast+Phydnet 8.17
BlockGPT 0.26

Table 4: Inference time (in seconds) per batch for each model.
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G.3 Hyperparameter Tuning

We conducted extensive hyperparameter tuning for all models to ensure fair comparison. The final
hyperparameters were selected based on validation performance on a held-out validation set.
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