

Mapping Farmed Landscapes from Remote Sensing

Michelangelo Conserva, Alex Wilson, Charlotte Stanton, Vishal Batchu, Varun Gulshan

Mapping Farmed Landscapes from Remote Sensing

To overcome the critical lack of detailed ecological maps needed for managing agricultural landscapes, we developed **Farmscapes**: the first large-scale, high-resolution map that identifies ecologically vital rural features, including often overlooked elements like **hedgerows** and **stone walls**.

We achieved high accuracy in mapping key habitats with a deep learning model trained on aerial imagery and expert annotations.

As a result, this work enables data-driven planning for habitat restoration, supports the monitoring of key initiatives like the EU Biodiversity Strategy, and lays a foundation for advanced analysis of landscape connectivity.

Figure 1. Typical English landscape elements, hedgerows (left), stone walls (centre), and patches of trees (right).

The landscape elements dataset was created using **human annotations**, leveraging **high-resolution imagery** (25cm) and 1m LiDAR-based **elevation data**. Approximately 1,000 tiles (512m × 512m) were generated, with annotation locations strategically selected to capture rural landscapes while excluding dense urban areas and forests.

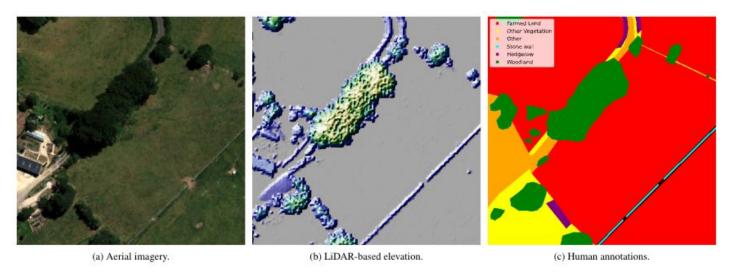
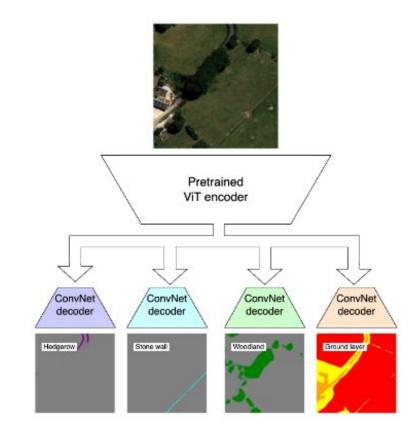


Figure 4. Example of human annotations drawn based on aerial and LiDAR-based elevation data.



Our model is a segmentation transformer with a vit encoder and multiple convnet decoders.

The model segments mutually exclusive ground classes (farmed land, vegetation, other) and overlapping above-ground features (hedgerows, trees, stone walls).

Trained on 742 tiles and validated on carefully selected 200 tiles, the model achieves high segmentation accuracy.

F1-scores of 95.5% for farmed land, 85.4% for vegetation, 92.7% for trees, 72.5% for hedgerows, and 61.8% for stone walls.

Our released dataset can support **habitat restoration**, **agroforestry**, and **sustainable land use planning**.

Publicly available for England, with European maps upon request, this work aligns with biodiversity goals like the "30 by 30" initiative.

Future improvements will focus on refining detection of hedgerows and stone walls, increasing geographical and temporal coverage, and applying landscape connectivity analysis to inform conservation priorities.

Earth Engine Collection Link

