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Abstract

To overcome the critical lack of detailed ecological maps needed for managing
agricultural landscapes, we developed Farmscapes: the first large-scale, high-
resolution map that identifies ecologically vital rural features, including often
overlooked elements like hedgerows and stone walls. We achieved high accuracy
in mapping key habitats with a deep learning model trained on aerial imagery and
expert annotations. As a result, this work enables data-driven planning for habitat
restoration, supports the monitoring of key initiatives like the EU Biodiversity
Strategy, and lays a foundation for advanced analysis of landscape connectivity.

1 Introduction

Agricultural systems face increasing pressure to meet the growing demand for food while maintaining
ecological balance and mitigating climate impacts (Webb et al. 2020). The intensification of
agriculture over recent decades has led to significant environmental challenges, including habitat loss,
soil degradation, and declining wildlife populations (Landis}, [ 2017)).

In intensively farmed landscapes, natural habitats such as woodlands, grasslands, and hedgerows
are often fragmented or removed altogether (Krauss et al. 2010). In this scenario, remaining
patches of semi-natural habitats are disconnected from one another, creating isolated islands in a
sea of monocultures. This fragmentation limits species movement, reduces genetic exchange, and
diminishes overall biodiversity (Wan et al.,|2018)). Biodiversity loss, in turn, weakens the resilience
of ecosystems, reducing their ability to provide essential services such as pollination, pest control,
and climate regulation services that are crucial to sustainable agriculture (Lanz et al., 2018]).

The global urgency to address biodiversity loss is underscored by international commitments such
as the Kunming-Montreal Global Biodiversity Framework, which includes the landmark “30 by 30”
initiative to protect 30% of terrestrial and marine ecosystems by 2030 (UNEP-WCMC and IUCN|
2024;|CBD) 2022)). This ambitious goal has been adopted at a continental level by the EU Biodiversity
Strategy for 2030, compelling Member States to enhance habitat protection and restoration, with a
particular focus on farmland biodiversity (Hermoso et al., 2022).

While these initiatives reflect a growing consensus on the need for large-scale restoration, their success
hinges on implementing targeted, cost-efficient interventions (Duke et al., [2013). A fundamental
prerequisite for such strategic action is the availability of accurate maps of rural landscapes, which are
essential for guiding governments and local initiatives in prioritising restoration efforts and allocating
resources effectively (Turner, 2001} [Moilanen et al.| [2005]).

Current efforts in high-resolution landscape mapping have shown promise but face significant
limitations. While deep learning techniques are now state-of-the-art for segmenting remote sensing
imagery, their application to fine-scaled rural features remains limited. Studies on hedgerow mapping
often suffer from coarse image resolution that misses fine details, misclassification with other woody
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vegetation, or methodologies that lead to imprecise boundaries (Ahlswede et al., 2021} |Strnad et al.}
2023} Muro et al., 2024). Research on stone wall mapping has leveraged high-resolution LiDAR data,
but the intensive manual labour required for labelling has restricted these efforts to smaller areas (Suh
and Ouimet, [2023; [Trotter et al., [2022)). Furthermore, existing commercial and institutional datasets
are often limited by high costs or a lack of methodological transparency, hindering widespread
scientific use (Broughton et al.| [2024; Internationall, 2024). A critical gap therefore exists for a
mapping resource that is simultaneously large-scale, high-resolution, and openly accessible.

To address these limitations, we introduce Farmscapes: a large-scale, high-resolution (25 cm) open
dataset that identifies ecologically vital rural features across England, with preliminary, unvalidated
maps generated for other European countries. This map was produced using a deep learning model
trained on a novel dataset of landscape elements annotations collected for imagery in England. While
quantitatively validated across most of England, the model has also been used to generate illustrative
landscape maps for other European countries with similar rural characteristics. By releasing this
extensive dataset publicly, we provide ecologists, policymakers, and local communities in England
with a powerful, data-driven tool, while offering a foundation for a future pan-European resource. To
address potential privacy concerns, the initial public release is limited to the hedgerow, stone wall,
and woodland data layers. To the best of our knowledge, Farmscapes is the first resource of its kind,
enabling precise, large-scale assessments of ecological status and facilitating the targeted restoration
efforts needed to meet ambitious biodiversity goals.

2 Landscape elements

Agricultural landscapes are composed of a mosaic of distinct features, which we refer to as landscape
elements. These elements, both natural and anthropogenic, define the physical structure of the envi-
ronment and are fundamental to its ecological function. Their composition and spatial arrangement
influence biodiversity, species movement, and the provision of ecosystem services. In this study, we
focus on mapping four key elements that are vital to the character and health of European farmland:
hedgerows, stone walls, woodland, and the surrounding farmed land.

Hedgerows are linear features composed of shrubs and trees that form boundaries in farmed land-
scapes. Their structure can vary, ranging from low, intensively managed shrubs to complex, unman-
aged lines containing mature trees. This structural diversity is key to their ecological importance.

Woodland refers to areas dominated by trees with a more open canopy and lower density than
forests, often featuring a developed understory. These ecosystems are crucial for carbon sequestration,
soil stability, and water regulation, and they significantly enhance landscape diversity by acting as
transitional zones between open land and dense forests.

Stone walls are man-made linear boundaries constructed from stone. While serving agricultural
purposes like enclosing livestock, they also function as important microhabitats. The crevices provide
shelter for insects, small animals, and reptiles, and support specialised plant life like mosses and
lichens, thereby enhancing local biodiversity.

Farmed land comprises areas actively managed for agricultural production, including the cultivation
of crops and the raising of livestock. As a dominant global land use, it is fundamental to food security
and includes systems ranging from intensive monocultures to diverse agroforestry. In our study, this
class represents the matrix in which other landscape elements are embedded.

3 Data

In order to train our deep learning model, we collect 25cm aerial imagery (input) and human
annotations (labels). To ensure the accuracy of these annotations, we provided the annotators with
Im LiDAR-derived height maps as a supplementary reference tool.

Aerial imagery. Identifying fine-scaled features like hedgerows requires imagery with a resolution
significantly higher than publicly available sources like Sentinel-2 (10m). To address this, we used
proprietary 25cm resolution aerial imagery, captured over England (2018-2022). This high-resolution
dataset served as the sole input for our deep learning model.



LiDAR measurements. While aerial imagery contains visual cues for height, such as shadows
and texture, interpreting them consistently can be ambiguous. To establish a highly accurate and
unambiguous ground truth, we equipped our annotators with a 1m resolution height map from the
UK Environment Agency’s LiDAR Digital Terrain Model (DTM) (Agency, [2022)). This reference
layer allowed them to rapidly and confidently distinguish between features of different heights, such
as a tall hedgerow and low scrub. The deep learning model was then trained on the aerial imagery to
learn the correlation between these visual cues and the LIDAR-verified labels. Note that the LIDAR
data was used exclusively for creating the ground truth and was not an input to the model itself.

(a) Aerial imagery. (b) LiDAR-based elevation. (¢c) Human annotations.

Figure 1: Comparison of data sources.

Sampling Strategy. We created a novel dataset by sampling 942 image tiles from rural England,
covering approximately 247 km?. To ensure a representative sample of key features, our process
first excluded high-density urban areas and large forests, then used stratified sampling to over-
sample regions with a known high density of stone walls. Each tile measures 512m x 512m, which
corresponds to 2048 x 2048 pixels at 25cm resolution.

Annotation Process. For annotation, experts used both the aerial imagery (Figure and LiDAR-
derived height data (Figure [Ib) as complementary references. This process resulted in a final
annotation mask (Figure labeling seven exhaustive land cover classes: farmed land, hedgerows,
woodland, stone walls, other vegetation, water, and other (encompassing roads, buildings, etc.).

Training targets. To model the landscape’s vertical structure, where hedgerows or woodland can
overlay ground cover, we defined four training targets. A multiclass target was used for mutually
exclusive ground classes (farmed land, other vegetation, other), while three separate binary targets
were used to identify features that can co-exist within the same pixel space (hedgerows, woodland,
stone walls). The distribution of training targets is shown in Table[I}

Table 1: Percentage of classes of the training targets.

Ground Hedgerow Stone wall Woodland
Farmed land 67% Non hedgerow 99% Non stone wall 99% Non woodland 89%
Vegetation  27% Hedgerow 1% Stone wall 1% Woodland 11%
Other 3%

Deep learning model. We use a SETR-PUP segmentation transformer (Zheng et al.,2021)), which
uses a Vision Transformer (ViT) encoder and separate convolutional decoders for each of the
four targets. The encoder was pretrained on ~ 100 million global aerial images using a masked
autoencoder approach (He et al.| 2022). To improve generalisation, we applied extensive data
augmentation, including random flips, rotations, color jitter, resizing, and cutout (DeVries| [2017).
The model was trained on 512x512 pixel (128m x 128m) random crops.



4 Results

We evaluated our model’s performance on the hold-out test set using f1-score, precision, and recall.
Classification thresholds were selected to maximise the f1-score on the validation set. F1-scores are
presented in Table[2] Precision and recall are presented in the appendix (see Table [3). While these
scores establish a strong baseline, direct quantitative benchmarking against state-of-the-art methods
is precluded by our use of proprietary 25cm imagery, a step that was essential to resolve fine-scale
features like stone walls.

The model demonstrates solid performance on broad landscape features. For major classes like
Woodland and Farmed land, it achieved f1-scores of 96 &+ 1 and 95 £ 1, respectively. This indicates
that the model reliably identifies the primary matrix of the agricultural landscape. The segmentation
of fine-scale linear features presented a greater challenge. Nevertheless, the model achieves an
fl-score of 72 4+ 1 for Hedgerows. Performance on Stone walls was lower, with an fl-score of
60 + 1, reflecting the difficulty of identifying these features, which are often just a few pixels wide
and can be obscured by vegetation. These results represent a significant advancement in mapping
these critical, yet difficult-to-detect, ecological corridors.

Table 2: Test metrics with average and standard deviation over twelve seeds.

Ground Above ground

Vegetation Farmed land ~ Other Stone walls Hedgerows Woodland
fl-score 84+1 95+1 81+3 60 £ 1 72+1 96 +1

5 Conclusion

In this study, we have successfully demonstrated the power of combining high-resolution aerial
imagery with a deep learning approach to produce Farmscapes: the first large-scale, open-access
map of key rural landscape elements. Our model, which leverages a Vision Transformer architecture,
has proven highly effective at segmenting the agricultural matrix, achieving excellent performance
in mapping broad features like woodland and farmed land. More importantly, it marks a significant
advancement in the automated identification of fine-scale linear features, delivering strong results
for hedgerows and a promising baseline for the notoriously challenging task of mapping stone walls.
By creating and publicly releasing this dataset, we provide a foundational tool for ecologists, land
managers, and policymakers to support data-driven conservation, monitor progress towards ambitious
goals like the EU Biodiversity Strategy, and enable new research into landscape connectivity.

This study is subject to four key limitations. First, our use of proprietary 25cm aerial imagery, while
essential for resolving fine-scale features like hedgerows and stone walls, precludes direct quantitative
benchmarking against state-of-the-art methods. Second, model performance is fundamentally con-
strained by annotation quality; despite our use of LiDAR to maximize accuracy, the manual labeling
process is subject to human error, which can introduce noise. Third, this map represents a static
snapshot from 2018-2022 imagery. Monitoring landscape change, a critical need for tracking policy
effectiveness, is not yet possible and remains important future work. Finally, quantitative validation
was conducted exclusively on data from England, meaning the map’s reliability outside this region
remains unquantified; any application to other geographies must be considered preliminary.

Building on this foundation, future work will proceed along three main avenues. First, we aim to
refine the model’s accuracy, challenging classes like stone walls, by exploring other architectures
and complementary data sources. Second, we plan to broaden the map’s scope, geographically and
temporally. This involves collecting new annotated data from diverse European landscapes to improve
generalization and adapting the model to work with lower-resolution imagery to enable historical
change analysis. Finally, our ultimate goal is to translate this detailed map into actionable ecological
insights. By conducting a comprehensive network analysis of landscape connectivity, we can identify
critical corridors, fragmentation points, and priority areas for restoration, transforming Farmscapes
into a dynamic tool for strategic environmental planning.



References

Agency, U. E. (2022). Uk environment agency’s lidar digital terrainmodel (dtm). Accessed on
05.02.2014.

Ahlswede, S., Asam, S., and Roder, A. (2021). Hedgerow object detection in very high-resolution
satellite images using convolutional neural networks. Journal of Applied Remote Sensing,
15(1):018501-018501.

Broughton, R., Burkmar, R., McCracken, M., Mitschunas, N., Norton, L., Pallett, D., Patton, J.,
Redhead, J., Staley, J., Wood, C., and Pywell, R. (2024). Ukceh land cover plus: Hedgerows
2016-2021 (england).

CBD, U. (2022). Kunming-montreal global biodiversity framework. In Fifteenth meeting of the
Conference of the Parties to the Convention on Biological Diversity (Part Two) Decision 15/4.

Chen, L.-C. (2017). Rethinking atrous convolution for semantic image segmentation. arXiv preprint
arXiv:1706.05587.

DeVries, T. (2017). Improved regularization of convolutional neural networks with cutout. arXiv
preprint arXiv:1708.04552.

Diakogiannis, F. 1., Waldner, F., Caccetta, P., and Wu, C. (2020). Resunet-a: A deep learning
framework for semantic segmentation of remotely sensed data. ISPRS Journal of Photogrammetry
and Remote Sensing, 162:94—114.

Dial, G., Bowen, H., Gerlach, F., Grodecki, J., and Oleszczuk, R. (2003). Ikonos satellite, imagery,
and products. Remote sensing of Environment, 88(1-2):23-36.

Duke, J. M., Dundas, S. J., and Messer, K. D. (2013). Cost-effective conservation planning: Lessons
from economics. Journal of environmental management, 125:126—133.

Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau,
D., Stehman, S. V., Goetz, S. J., Loveland, T. R., et al. (2013). High-resolution global maps of
21st-century forest cover change. science, 342(6160):850-853.

He, K., Chen, X., Xie, S., Li, Y., Dollar, P., and Girshick, R. (2022). Masked autoencoders are
scalable vision learners. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 16000—-16009.

Hermoso, V., Carvalho, S., Giakoumi, S., Goldsborough, D., Katsanevakis, S., Leontiou, S., Markan-
tonatou, V., Rumes, B., Vogiatzakis, 1., and Yates, K. (2022). The eu biodiversity strategy for 2030:
Opportunities and challenges on the path towards biodiversity recovery. Environmental Science &
Policy, 127:263-271.

International, B. (2024). National hedgerow map.

Krauss“, J., Bommarco, R., Guardiola, M., Heikkinen, R. K., Helm, A., Kuussaari, M., Lindborg,
R., Ockinger, E., Pirtel, M., Pino, J., et al. (2010). Habitat fragmentation causes immediate and
time-delayed biodiversity loss at different trophic levels. Ecology letters, 13(5):597-605.

Landis, D. A. (2017). Designing agricultural landscapes for biodiversity-based ecosystem services.
Basic and Applied Ecology, 18:1-12.

Lanz, B., Dietz, S., and Swanson, T. (2018). The expansion of modern agriculture and global
biodiversity decline: an integrated assessment. Ecological Economics, 144:260-277.

Marconcini, M., Metz-Marconcini, A., Ureyen, S., Palacios-Lopez, D., Hanke, W., Bachofer, F.,,
Zeidler, J., Esch, T., and Strano, E. (2020). World Settlement Footprint (WSF) 2015.

Moilanen, A., Franco, A. M., Early, R. L., Fox, R., Wintle, B., and Thomas, C. D. (2005). Prioritizing
multiple-use landscapes for conservation: methods for large multi-species planning problems.
Proceedings of the Royal Society B: Biological Sciences, 272(1575):1885-1891.



Muro, J., Blickensdorfer, L., Don, A., Kober, A., Schwieder, M., and Erasmi, S. (2024). Hedgerow
mapping with high resolution satellite imagery to support policy initiatives at national level.
Available at SSRN 5011709.

Neumann, J. L., Griffiths, G. H., Hoodless, A., and Holloway, G. J. (2016). The compositional
and configurational heterogeneity of matrix habitats shape woodland carabid communities in
wooded-agricultural landscapes. Landscape Ecology, 31:301-315.

Pirbasti, M. A., McArdle, G., and Akbari, V. (2024). Hedgerows monitoring in remote sensing: A
comprehensive review. IEEE Access.

Strnad, D., Horvat, S., Mongus, D., Ivajnsic, D., and Kohek, S. (2023). Detection and monitoring
of woody vegetation landscape features using periodic aerial photography. Remote Sensing,
15(11):2766.

Suh, J. W. and Ouimet, W. (2023). Regional mapping of stone walls in northeastern us using deep
learning. In Geological Society of America Abstracts, volume 55, page 386159.

Trotter, E. F. L., Fernandes, A. C. M., Fib&k, C. S., and KeBler, C. (2022). Machine learning for
automatic detection of historic stone walls using lidar data. International Journal of Remote
Sensing, 43(6):2185-2211.

Turner, M. (2001). Landscape ecology in theory and practice.
UNEP-WCMC and IUCN (2024). Protected planet report.

Wan, H. Y., Cushman, S. A., and Ganey, J. L. (2018). Habitat fragmentation reduces genetic diversity
and connectivity of the mexican spotted owl: a simulation study using empirical resistance models.
Genes, 9(8):403.

Webb, P., Benton, T. G., Beddington, J., Flynn, D., Kelly, N. M., and Thomas, S. M. (2020). The
urgency of food system transformation is now irrefutable. Nature Food, 1(10):584-585.

Zheng, S., Lu, J., Zhao, H., Zhu, X., Luo, Z., Wang, Y., Fu, Y., Feng, J., Xiang, T., Torr, P. H.,
et al. (2021). Rethinking semantic segmentation from a sequence-to-sequence perspective with
transformers. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 6881-6890.



A Annotation methodology and guidelines

Landscapes elements. Figure [2] presents visual examples of the primary landscape elements targeted
in this study: hedgerows, stone walls, and woodland.

Figure 2: Typical English landscape elements, hedgerows (left), stone walls (center), and woodland
(right).

Hedgerow Annotation Guidelines. To ensure consistent labelling of hedgerows, which exhibit
significant structural diversity, our annotation protocol follows the typology proposed by Neumann
et al.| (2016). This framework defines three distinct hedgerow types based on their structure and
management intensity. The key rule for our annotation process was to map these types to our final
land cover classes as follows:

* Type 1: A low-lying, intensively managed hedge composed of shrubs and lacking mature
trees (Figure3a). According to[Neumann et al|(2016)), these typically reach up to 1.5 meters
in height with an average width of 2.5 meters.

» Type 2: A less managed, taller hedgerow containing small trees or tall shrubs (Figure [3b)).
These features are structurally more complex than Type 1, with an average width of 7 meters.

» Type 3: A hedgerow that includes mature trees, often appearing from an aerial perspective
as a narrow, linear strip of woodland (Figure [3c). Due to its structural similarity to forest
edges, this type was classified as Woodland to maintain a clear distinction based on the
presence of a mature tree canopy.

(a) Hedgerow Type 1. (b) Hedgerow Type 2. (c) Hedgerow Type 3.
Figure 3: Types of hedgerows.
Sampling Strategy. The 942 image tiles for annotation were sampled from across England using

a stratified approach designed to ensure representative coverage of agricultural landscapes while
oversampling for the rare stone wall class. The process was as follows:

1. Exclusion Masking: We first excluded non-target areas. High-density urban regions were
masked using the World Settlement Footprint (Marconcini et al.| [2020), and large forest



blocks were masked using the Global Forest Change dataset (Hansen et al.l 2013). This
focused the sampling on the rural matrix.

2. Stratification: The remaining area was divided into two strata to ensure adequate represen-
tation of stone walls (Figure da). Stratum 1 consisted of regions with a known high density
of stone walls (e.g. Cotswold and the Lake District), while Stratum 2 comprised all other
eligible rural areas.

3. Random Sampling: We then performed stratified random sampling, allocating 15% of
the total tiles to Stratum 1 and the remaining 85% to Stratum 2. Figure 4b|shows the final
distribution of sampled locations.

This strategy ensures the dataset captures a wide variety of rural landscapes while providing sufficient
examples of the less common stone wall class for effective model training.

(a) High-density urban areas (white), forests (b) Locations sampled for annotation (red)
(yellow), and areas with higher stone wall superimposed on areas with available aerial
density (red). imagery.

Figure 4: Sampling strategy illustration.

B Related works

In the context of high-resolution landscape mapping, hedgerow mapping is one of the most studied
applications (Pirbasti et al., 2024). In Germany, |Ahlswede et al.| (2021) trained a DeepLab v3
(Chenl 2017) model using 1-meter resolution imagery from the IKONOS mission (Dial et al., 2003).
Labels were manually digitized hedgerow polygons provided by the Bavarian State Office for the
Environment. Although this study improved upon the use of coarser imagery, it was limited by the
resolution, which may miss finer details such as small gaps in hedgerows critical for ecological
analysis. Additionally, the focus solely on hedgerows excluded other important landscape features.
Strnad et al.| (2023) employed a U-Net model trained on aerial photography of Slovenia, with a
high spatial resolution of 25 cm. Labels for this study were derived from a reference layer based
on LiDAR point clouds collected in 2014 and processed to exclude buildings. While this approach
allowed for scaling without manual labelling, it was limited to identifying woody vegetation and
could not specifically distinguish hedgerows. More recently, Muro et al.| (2024) used multi-temporal
PlanetScope satellite imagery with a 3-meter resolution to map hedgerows across Germany using a U-
Net architecture. Labels were sourced from a dataset created by the Schleswig-Holstein State Office
for Agriculture, Environment, and Rural Areas, combining digital terrain models and high-resolution
imagery. However, this approach buffered hedgerow labels by five meters, potentially leading to
over-segmentation and the loss of fine details. In addition to academic research, institutional efforts
have also played a role in advancing hedgerow mapping. The UK Centre for Ecology and Hydrology
offers a dataset of linear hedgerows, providing a valuable resource for ecological studies (Broughton
et al.,[2024). Similarly, Bluesky (Internationall 2024) offers a map of hedgerows and trees across
the UK, which incorporates detailed volumetric information. While these datasets offer significant



potential for large-scale analyses, their high cost and lack of transparency regarding methodologies
and validation processes limit broader accessibility and utility.

In parallel, mapping stone walls has also benefited from advances in remote sensing and deep learning.
Suh and Ouimet| (2023)) mapped stone walls in the Northeastern USA using U-Net, and |Diakogiannis
et al.| (2020) models with high-resolution airborne LiDAR data. The model input consisted of
LiDAR-derived hillshades and slope maps, with labels created through manual digitization of stone
walls from LiDAR data, supplemented by aerial imagery, Google Street View, and field verification.
Similarly, [Trotter et al|(2022) focused on updating Denmark’s stone wall registry using a U-Net
model applied to LiDAR-derived terrain data. The model input included a Digital Terrain Model
(DTM), Height Above Terrain (HAT), and a Sobel-filtered DTM, all at a 40 cm resolution. Labels
were generated from a stone wall dataset provided by the Danish Ministry of Culture, validated and
corrected using the DTM. While both approaches demonstrate the effectiveness of using LiDAR
data to detect stone walls, the high manual labor required to create the labels limits the scale of the
datasets.

C Training details

Figure 5: Model architecture.

Hyperparameter optimization. The 942 tiles of the collected datasets are partitioned into 742 for
training, 100 for validation, and 100 for testing. To accurately assess model performance, validation
and test tiles were carefully hand-selected. This selection process prioritized tiles with the clearest
annotations and a representative number of instances for rarer classes like stone walls and hedgerows.
We optimized the training of hyperparameters by sweeping over weight decay and learning rate.
Performance for each hyperparameter combination was averaged across three random seeds evaluated
on the validation set.



Table 3: Test metrics with average and standard deviation over twelve seeds.

Ground Above ground
Vegetation Farmed land  Other Stone walls Hedgerows Woodland
f1-score 8441 95+1 81+3 60 +1 72+1 96 +1
recall 90+1 91+1 90+£1 53+1 70+1 92+1
precision 85 +1 9%+1 8244 58 £ 1 73+£1 90=£1

D Detailed performance metrics

Ground Layer. For the Vegeration class, the model achieves an f1-score of 84 + 1, a recall of
90 + 1, and a precision of 85 £ 1. This indicates that the model can accurately identify general
vegetation cover with high consistency and completeness. The Farmed land class exhibits even higher
performance, with an f1-score of 95 & 1, a recall of 91 £ 1, and a precision of 96 & 1, demonstrating
the model’s strong ability to delineate agricultural areas. The Other class, encompassing a variety
of non-vegetated, non-farmed land covers, achieves an f1-score of 81 + 3, arecall of 90 £ 1, and a
precision of 82 + 4. While the precision shows some variability, the high recall indicates that the
model captures most of this diverse class.

Stone Walls. The model achieves an fl-score of 60 & 1 for stone walls. The recall is 53 + 1,
and the precision is 58 4= 1. This suggests that while the model has some ability to identify stone
walls, there’s room for improvement, particularly in capturing all instances (recall). The relatively
balanced precision and recall indicate that the model is neither overly prone to false positives nor
false negatives, but rather struggles with consistent detection of these narrow features.

Hedgerows. For hedgerows, the model exhibits an fl-score of 72 + 1, arecall of 70 £ 1, and a
precision of 73 &£ 1. These results demonstrate a good ability to identify hedgerows, with a reasonable
balance between correctly identifying them (precision) and capturing all instances (recall). The
performance on hedgerows is notably higher than that on stone walls, likely due to their typically
larger size and more distinct visual characteristics.

Woodland. The model performs exceptionally well on the Woodland class, achieving an f1-score of
96 + 1, arecall of 92 £ 1, and a precision of 90 & 1. This indicates that the model can very accurately
and consistently identify woodland areas. The high f1-score, combined with high recall and precision,
demonstrates the model’s strong capability in delineating this important land cover type.
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E Qualitative examples

Figure 6: English landscape.

Figure 7: France landscape.
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Figure 8: Germany landscape.

Figure 9: Sweden landscape.
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Figure 10: Italy landscape.

Figure 11: Portugal landscape.
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