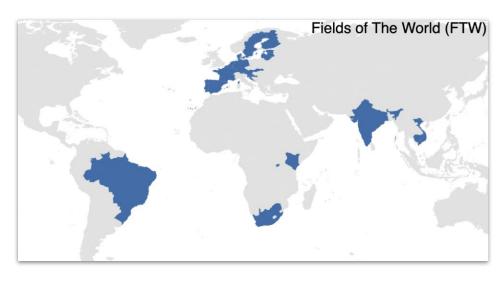
Agricultural Monitoring with Fields of The World (FTW) Tutorial for CCAI at NeurIPS 2025

Hannah Kerner¹, Caleb Robinson², Isaac Corley³, Matthias Mohr⁴, Gedeon Muhawenayo¹, Ivan Zvonkov⁵, Tristan Grupp⁶, Nathan Jacobs⁷

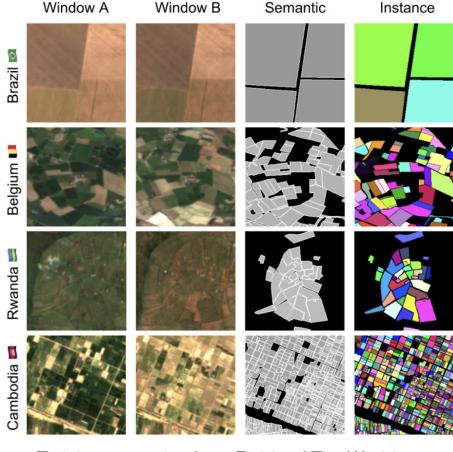
- (1) Arizona State University
- (2) Microsoft AI for Good
- (3) Wherobots
- (4) Taylor Geospatial Engine
- (5) University of Maryland
- (6) World Resources Institute
- (7) Washington University St Louis

- Agricultural expansion and management contribute to deforestation, biodiversity loss, and greenhouse gas emissions
- Climate change threatens crop yields, food security, and rural livelihoods
- Accurate, updated data about field location and management is essential for building sustainable and resilient food systems
- Field information is unavailable, outdated, or fragmented in most of the world


- Agricultural expansion and management contribute to deforestation, biodiversity loss, and greenhouse gas emissions
- Climate change threatens crop yields, food security, and rural livelihoods
- Accurate, updated data about field location and management is essential for building sustainable and resilient food systems
- Field information is unavailable, outdated, or fragmented in most of the world

- Agricultural expansion and management contribute to deforestation, biodiversity loss, and greenhouse gas emissions
- Climate change threatens crop yields, food security, and rural livelihoods
- Accurate, updated data about field location and management is essential for building sustainable and resilient food systems
- Field information is unavailable, outdated, or fragmented in most of the world

- Agricultural expansion and management contribute to deforestation, biodiversity loss, and greenhouse gas emissions
- Climate change threatens crop yields, food security, and rural livelihoods
- Accurate, updated data about field location and management is essential for building sustainable and resilient food systems
- Field information is unavailable, outdated, or fragmented in most of the world


Countries covered by Fields of The World benchmark dataset. Ground-truth field boundary datasets do not exist for countries in gray.

Fields of The World (FTW)

- Al ecosystem for automatic field segmentation from satellite images
- Largest ML benchmark dataset of satellite imagery and field boundaries to date
 - 76,000 patches of 2-date Sentinel-2 satellite imagery, semantic and instance segmentation labels
- Covers 24 countries on 4 continents
- Hosted pretrained models on FTW dataset
- Command line interface (CLI) for data processing, prediction, and post-processing

https://fieldsofthe.world

Training examples from Fields of The World benchmark dataset. Kerner et al. (2025), AAAI.

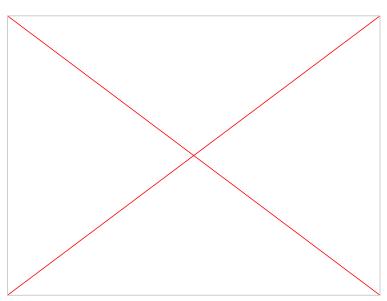
Tutorial objectives

Use FTW to extract field boundaries for a region and time of interest (ROI/TOI)

Use field boundaries for perform field-scale crop type classification (example in Iowa, USA)

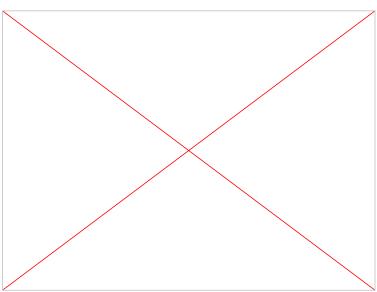
Use field boundaries to identify **forest loss** in agricultural landscapes (example in Mato Grosso, Brazil)

bit.ly/ftw-ccai-tutorial

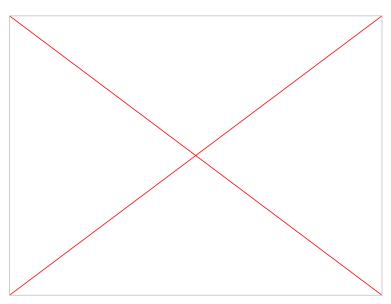

Steps for Generating Field Boundaries with FTW

- **Data Description**
 - Data Download
 - Specify your region of interest (ROI)
 - Specify your time of interest (TOI)
 - Get the start and end of season dates from crop calendar
 - Download Sentinel-2 images for Window A and Window B

bit.ly/ftw-ccai-tutorial


Steps for Generating Field Boundaries with FTW

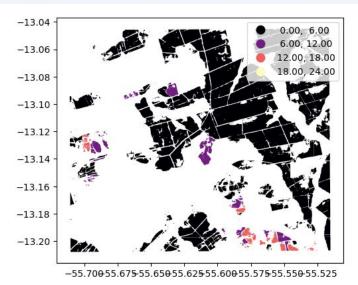
- Predict field boundaries
 - Filter predicted by land cover
 - Polygonize boundaries
 - Convenience function
 - Visualize the final field boundaries

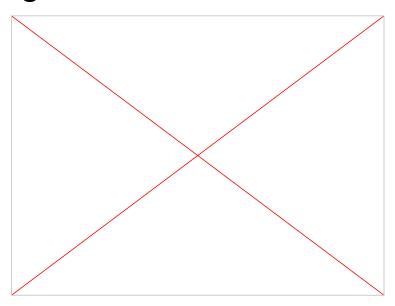


bit.ly/ftw-ccai-tutorial

Use Case: Crop Type Classification

- 15 Use case: crop type mapping with few labels
 - Generate boundaries for crop type mapping use case
 - Generate embeddings for each field
 - MOSAIKS
 - 🧙 Join with the USDA's Cropland Data Layer (CDL) data
 - Nedicting crop type with few labels
 - Crop type mapping: Results & Discussion
 - How does performance change with more labels?




bit.ly/ftw-ccai-tutorial

Use Case: Forest Loss Monitoring

- Use case: monitoring forest loss
 - Do it yourself: Generate boundaries for forest loss use case
 - Y Join with Hansen Global Forest Change dataset
 - ♠ Monitoring Forest Loss: Results & Discussion

bit.ly/ftw-ccai-tutorial

Final Discussion & Takeaways

- ## Field boundaries give a foundation for agricultural monitoring
- Common data to link remote sensing data to agricultural monitoring tasks
- Allow agricultural monitoring at the field (not pixel) scale
- Forest loss monitoring
- Forest change datasets can be intersected with field polygons to identify fields associated with recent deforestation.
- Related to supply chain verification and compliance with regulations like the **EU Deforestation Regulation**
- Crop type mapping with few labels:
- Even limited ground-truth labels can be leveraged for crop classification, but accuracy scales with more training data
- Particularly relevant for data-scarce regions