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A perfect stormis hitting the global buildings space

Emissions from buildings are massive
and still rising rapidly

Accounting for 26% of global CO2
emissions, energy in buildings is one of the
few areas that has yet toimprove.
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Energy efficiency is the single largest
contributor to reaching climate goals

Immediate CO2 cuts are essential to
achieve net zero and limit global warming,

and energy efficiency can deliver 1/3 of this.
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But building owners lack budget, time
and resources to adapt quickly

In EU municipalities alone, 214,000 new jobs
willbe needed over the next decade to
transform the building stock.
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And are exposed to regulatory
pressure and societal scrutiny

Energy managementis now required, with
ambitious targets depleting resources and
risking reputational damage if unmet.

11.7% 1.3%

reductionin EU annual energy savings

energy consumption required by building
targeted by 2030. owners, increasing to
1.9% by 2029.
ISO certifications

forenergy or environmental
management and climate
assessments with energy review
ifabove 85TJ



Major barriers are causing a slow and ineffective optimization process

Costly and
time-consuming to
collectand
manage data

Difficult to identify Lack of resources for
and plan energy operating buildings
optimization and implementing
projects projects

Rate of reductions too slow and
huge untapped savings potential!

Limited follow-up
and documentation
of savings and
reductions



Major barriers are causing a slow and ineffective optimization process

Limited follow-up
and documentation

of savings and
reductions

Rate of reductions too slow and
huge untapped savings potential!



Measurement & Verification

The main goal of M&V is to create consensus around an unmeasurable number.
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Source: EVO, International Performance Measurement and Verification Protocol


https://evo-world.org/en/products-services-mainmenu-en/protocols/ipmvp

Historically a manual process using monthly billing data...
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.. today can be easily automated with ML



The M&V workflow at a glance

1. Define periods 3. Detect non-routine

Set baseline, blackout, and events

5. Quantify
uncertainty

Propagate model error to

savings and report

confidence intervals.

reporting windows Flag operational changes
capturing normal unrelated to the project
operations. and encode adjustments.
@ [ @ ®
2. Build baseline 4. Predict
Train a driver-based model counterfactual
of pre-project "business- Apply the baseline to post-
as-usual" use. period drivers to estimate

no-project use.

6. Validate the model

Check fit metrics,
residuals, and backtests
against guidelines and
physics.



Dataset usedin the analysis

g\ BUILDING DATA *)

%>/ GENOME PROJECT

building-data—genome-project-2

<— Jupyter notebooks, named after the naming convention

F— README . md <— BDG2 README for developers using this data-set

L data

|  |-metadata <- buildings metadata

| | weather <- weather data

| L meters

| L raw <— all meter reading datasets

| - cleaned <— cleaned meter data based on several filtering steps

| L kaggle <—- the 2017 meter data that aligns with the Kaggle competition
I notebooks

J=

figures

<— figures created during exploration of BDG 2.0 Data-set

https://github.com/buds-lab/building-data-genome-project-2



Define periods for the chosen building

Consumption (kWh)
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> Blue: Baseline period
> Pink:Installation period
> Green: Reporting period



Detect and exclude Non-Routine Events
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> Exclude from the analysis periods with abnormal consumption



Validate weather data and select features
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Commercial buildings’ consumptionis mainly driven by weather and occupancy
Weather datais available fromtherepo

Occupancy incommercial buildings is highly correlated with “calendar features”
In this case we willuse “hour of day”, “day of week”, and “week of year”



Build an energy prediction model (LightGBM)

Popular Machine Learning
Mlodels for
Energy Prediction
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Source: https://www.reimagine-energy.ai/p/data-driven-efficiency-predicting



Use the counterfactual energy consumption model to estimate savings

~— Adjusted baseline consumption
14k ——— Reporting consumption
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The savings from the energy efficiency project are equal to the difference between the adjusted
baseline (counterfactual) consumption, and the metered consumptionin the reporting period.

> Total savings: 890 MWh
> Savingsuncertainty: +/- 24.4 MWh, 3% of the estimated savings (95% confidence)



Modelinterpretability: feature importances

Importance

LightGBM Feature Importances
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Model interpretability: PDP + ICE

Partial Dependence Plot (PDP)

400 1
300 -
€ 200 A
=] ICE
Q.
E —— PDP
2 1004 === avg output
e
04
—100 A

-10 0 10 20 30 40
airfemperature

> Global effect plot (temperature)



Model interpretability: PDP + ICE

Partial Dependence Plot (PDP) Partial Dependence Plot (PDP)
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> Regional effect plot (temperature varying by hour of the day splits)
> Duringthe day (occupied): crisp cooling slope after ~15-20 °C
> During the night (unoccupied): weak effect, late kick-in



Real-world application

> Methodology used daily to verify savings across 60,000 buildings in Europe

> Usedto verify savings equivalent to more than 12,000 tCO2e each year
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Continue the conversation

> Trythisyourself on Gooqgle Colab
> Find out more about Ento: ento.ai

> Reimagine Energy newsletter: reimagine-enerqgy.ai

> Findmeon LinkedIn:
linkedin.com/in/benedetto-arillone/

> Reachout: benedetto@ento.ai


https://colab.research.google.com/drive/1aG6WF_Z3TKnQ6wEHSpDKO8nn-FrJ6htw#scrollTo=yNv0ANr5WcD_
http://ento.ai
http://reimagine-energy.ai
http://linkedin.com/in/benedetto-grillone/

Thank you!

Found this presentationinteresting? Let’s connect
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Benedetto Grillone, PhD
Energy + Al




