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Background

e Climate change has severe effects on
ecosystems and human societies. January 2025
was the warmest ever, according to the WMO'.

e Despite scientific evidence, climate skepticism
persists, amplified by social media platforms like
X (formerly Twitter).

e In 2022, 850,000 tweets on X contained climate-
skeptic language, the highest recorded?.

https://wmo.int/media/news/january-2025-sees-record-global-temperatures-despite-la-nina
https://www.thetimes.com/business-money/technology/article/climate-sceptic-tweets-surge- after-musks-twitter-takeover-5mtvnwazb
Image source: https://www.canva.com/photos/MAENYN4o_AU/
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Motivation & Objective

o Skepticism weakens the perceived urgency for action;
therefore, understanding the mechanisms that drive the

spread of climate skepticism online is important.

e We propose a methodological approach combining agent-
based simulation with deep-learning-based simulation
inference to identify which social learning strategies (SLS) or

biases drive the spread of climate skepticism on X.

B Image source: https://www.iberdrola.com/corporate-governance/governance-sustainability-system/environment-climate-change-policies/climate-action-policy,
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https://www.iberdrola.com/corporate-governance/governance-sustainability-system/environment-climate-change-policies/climate-action-policy

Social Learning Biases

e Social learning strategies (SLS)-> underlying biases

guiding what, when, and whom people copy.

Contont bias e Individual learning is costly, so people resort to

social learning.

Age dependence

3https://www.nature.com/collections/feibciaebg O 3
Image Source



https://www.freepik.com/premium-vector/ethnicity-abstract-concept-vector-illustration_38421982.htm

Proposed Framework

Dataset: a large sample of climate
change X data (n = 507,358)
curated by Brady et al in

2017.
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Brady et al. Emotion shapes the diffusion of moralized content in social networks. Proceedings of the National Academy of Sciences,

114(28).7313-7318, 2017.139
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Proposed Framework

Stages of our framework:

e Prior distributions: range of
possible parameter values
based on assumptions or prior
knowledge.
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Proposed Framework

Stages of our framework:

ABM: Our ABM simulates
interactions between a population
of X users with:

e follower counts (T ),

o activity levels (r),

o ideologies (G)

e probabilities of tweeting original

tweets (p)

from real users in the observed
data.
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Proposed Framework

Stages of our framework:
ABM:

Baseline attractiveness for retweeting:
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Proposed Framework
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Proposed Framework

Stages of our framework:

SBIl: We will apply the trained neural
network to produce posterior
predictions for each parameter in the

ABM, based on the five distributions
computed from the real data.

The posterior distributions reveal the
combinations of biases that best
reproduce the retweet dynamics in the
real dataset.
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Preliminary Result

Posterior distribution for each parameter.
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Preliminary Result

Posterior predictive checks:

Density (log scale)
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Future Work

e Use (Generalized Linear Mixed Models) GLMMs to test whether retweeting behavior
differs across ideological communities in the dataset

Pathways To Impact

The insights from our work will help:

e |dentify social learning biases for content moderation and recommendations (e.g., if
users have a bias towards negative tweets, moderators might design controls to limit
the spread of negative or misleading content).

e Guide policy makers and climate communicators on message framing..
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Thank You!




