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INTRODUCTION

Despite escalating climate impacts, skepticism persists and spreads rapidly through social media [1, 2], which
amplifies misinformation and weakens the urgency for action [3, 4, 5]. Understanding the mechanisms behind
this spread is critical for effective climate communication.
Research Question: Which social learning biases best explain how climate beliefs spread on X?

OBJECTIVE

We propose an agent-based modeling &

simulation-based inference framework to reveal

which social learning biases shape climate
change conversations on X, offering insights to

Improve online climate dialogue.

PRELIMINARY FINDINGS
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Preliminary GLMM analysis revealed
that retweeting is ~40% higher within
ideological groups, which aligns with
the result above.
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The posterior distributions reveal combinations of
biases that best reproduce observed retweet
dynamics in real-world data
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IMPACTS

The insights from our work will help: (1) identify biases (e.g.,

might design controls to limit the spread of negative or misleading content).
(2) Guide policy makers and climate communicators on message framing.

If users have a bias towards negative tweets, moderators
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