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Abstract

We propose a multi-phase plan to study the feasibility and benefits of deploying
energy-efficient deep learning models on edge devices using passive acoustic mon-
itoring (PAM) for climate change mitigation and adaptation. Current approaches
involve collecting audio recordings for long periods and then automatically anno-
tating them with bioacoustic models at a central location; we make the case for
running these bioacoustic models on-edge to significantly speed up the operational
efficiency of PAM. Successful deployments would open up several possibilities,
including early warning systems for climate disasters, frequent monitoring of a
region’s resistance to extreme climate events, and real-time monitoring of the
effects of human activities on ecosystems.

1 Introduction

Passive bioacoustic monitoring (PAM) has emerged as a transformative non-invasive technique for
ecological research, enabling scientists to systematically record and analyze animal vocalizations
using autonomous acoustic sensors to identify species, assess population dynamics, and monitor
ecosystem health. In the past decade, PAM has been successfully used to monitor species of owls[12],
seabirds [2], bats [5], beaked whales [20], frogs[14] and elephants[25]. However, the current PAM
workflow often requires deploying recording units in remote locations for days or weeks, after which
these units are physically retrieved to centralized computing facilities for processing. This offline
processing paradigm introduces delays of weeks between data collection and actionable insights,
limiting the utility of this technique[22]. On-edge bioacoustic models offer a more efficient and
sustainable solution to these operational bottlenecks. They enable frequent processing of captured
audio directly at the recording site, reducing the need for physical device retrieval and centralized
data processing. The processed results and relevant audio segments can be transmitted over a network
to researchers. This approach fundamentally restructures the PAM workflow, reducing the weeks long
delays to near real-time insights, as illustrated in Figure 1. In addition to reducing these operational
bottlenecks, on-edge processing involves light-weight models and optimizations, which would result
in reduced energy usage and thus reduced carbon emissions. This is especially important as PAM
scales up and becomes more widely deployed [21].

We measure energy consumption during inference using SPEC-approved power measurement devices
for direct instrumentation. For CUDA containers, we estimate the energy consumption of these
models by first measuring the total floating point operations(FLOPs) calculated during inference at
full throughput. Then using the power efficiency of ML models on different GPU architectures[6]
we get our final estimations. To evaluate these models, we look at MLPerf[23], a benchmarking
framework for deep learning models, to create energy consumption profiles for these models.
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1.1 Bioacoustic Monitoring and Climate Change

Bioacoustic monitoring isn’t just useful for the conservation efforts and tracking of specific animal
species. It also has important applications in monitoring climate change and predicting its impact on
humans. The biodiversity of an ecosystem serves as a proxy for its resistance to climate perturbations
[11], often over multiple decades [16]. Studies show that monitoring bioacoustics can serve as an
early warning of climate extreme events such as typhoons[18], tracking invasive species[12] and
changes in animal behavior from human logging[25]. Bioacoustics can also play a role in tracking
biodiversity recovery in tropical forests[15]. This is important since there have been instances of
planting large monocultures of eucalyptus trees for reforestation that have led to increased droughts
and forest fires[3] [7] [19]. The real-time monitoring capabilities enabled by on-edge PAM systems
represent a crucial tool for tracking reforestation efforts and detecting early warning signals of climate
extremes and ecosystem destabilization before these processes reach irreversible tipping points.

Figure 1: What an inference pipeline for bioacoustic monitoring with on-edge models might look like.
Acoustic sensors will feed raw audio into edge devices running optimized models; only lightweight
summaries, small audio clips, and alerts will be sent to the cloud for aggregation and climate
accounting.

2 Methodology

We will profile state-of-the-art(SOTA) bioacoustic models (CNN + Spectrogram approaches [21]
and NatureLM-audio [17]), a foundational audio language model, on edge devices(such as NVIDIA
Jetson boards) and CUDA containers. We use the following MLPerf Power [23] metrics for evaluation,
as they remain relevant even when systems scale.

• Energy per inference: For cases without direct instrumentation, we can infer the energy con-
sumption by calculating total FLOPs during inference for an edge device or CUDA container
and estimate using Giga FLOPs(GFLOPS) per watt of the system at full throughput[6].

• Samples per joule: This is the number of inferences that the system can make at full
throughput per joule of energy. It is an indication of the energy efficiency of the edge device.

• Performance-constrained measurement: We compare the performance of a model running
on an edge device to its performance running on a cloud server to ensure that there is no
severe degradation.

We will measure the performance of these models by training on BirdCLEF 2025 [9], an audio
soundscape dataset that spans different taxonomic groups, to quantify both the technical feasibility
and the sustainability gains of running these models on edge. Since this dataset includes recordings
from a rich ecosystem of threatened and endemic species, it serves as a strong test bed for studying
ecosystems vulnerable to climate extremes or industrial impacts.
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2.1 Phase 1: Estimating Energy Consumption for a Single Inference

We begin by estimating the energy consumption of a single inference on CUDA containers. We profile
a ResNet50 model[8] and the first place solution for BirdCLEF[1](using Noisy Student training[26]),
which are trained on mel spectrograms extracted from smaller chunks of the audio. We will measure
FLOPs and GFLOPs per watt measurements [6] to estimate the energy consumption for multiple
inferences on CUDA containers and average the results. We look at the total energy consumption
of running inferences on a batch of audio inputs. Assuming 30 second audio chunks, we would
process 2880 audio inputs in a 24 hour period. The results would include identified species and their
confidence, timestamps, key audio clips, and location metadata.

2.2 Phase 2: Measuring Energy Consumption for NatureLM-audio

We run the same inferences on a fine-tuned NatureLM-audio foundational model [17] that uses a
Llama 3.1-8B LLM under the hood. we run the model on an edge device (NVIDIA Jetson board) and
use direct instrumentation to get accurate readings of the energy consumption of the entire system,
which also includes peripherals and data transmission costs. For the fine-tuning process, we take an
audio-text pair as input, and encode the audio input with a BEATs encoder [4]. The embeddings are
then connected to the LLM using a Q-Former, and the LLM is finetuned with LoRa[10]. For 50% of
the audioprompt pairs, the correct species label is intentionally omitted. Under 4-bit quantization, the
Llama 3.1-8B model requires a minimum of 6 GB VRAM, whic is sufficient to deploy on NVIDIA
Jetson.

2.3 Limitations and Potential Topics for Further Research

The energy costs of training and deploying bioacoustic models are beyond the scope of this proposal.
We also ignore the effects of temperature and humidity on energy efficiency. Prior work has
also explored solar-powered recorders as energy sources for powering edge devices[13], but such
considerations remain outside our scope.

3 Future Outlook and Impact

To estimate the impact of successfully deploying deep learning models and running inferences
on edge, we take a look at some existing projects that would benefit from this initiative. A 2023
study on the ecological response to typhoons[18] utilized recording audio soundscapes for 30 days
before and after a typhoon impact to measure the difference in bird calls. Part of the study involved
using machine learning methods to identify bird species after the recordings had been collected.
An application of this proposal would be to run these bird classification models at recording sites
and prepare early for a potential typhoon impact. In 2020, the U.S. Department of Agriculture’s
Forest Service published a study on the early detection of invasive Barred Owl species[12][24] using
bioacoustics. The study involved the deployment of recording devices across ∼400 sites and the
collection of audio recordings for 5 to 7 nights at a time over a 5-month period, redeploying the
devices after each survey. Even running rudimentary inferences at these sites would reduce the wait
time for researchers to analyze the results and helped them make better informed decisions about
placing devices at new sites and tracking the behavior of invasive species. If successful, these on-edge
monitoring networks can operate continuously and autonomously, providing the scientific foundation
necessary for effective climate adaptation and ecosystem preservation strategies in an era of rapid
climate change.
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