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Abstract

Most of the world’s climate action policies are planned and implemented at the
local level, through city and regional climate action plans (CAPs). To assess global
progress in climate mitigation and adaptation, as in forthcoming assessments such
as the 2027 IPCC Special Report on Climate Change and Cities, we need systematic
ways to track and analyze these plans. However, CAPs are dispersed across thou-
sands of jurisdictions, vary widely in structure and format, and are often difficult
to access. We propose a standard CAP ontology, and a retrieval- and extraction-
oriented pipeline that leverages recent advances in natural language processing
(NLP) and information retrieval (IR) to transform CAPs into a structured, verifiable
dataset of climate policies. As a case study, we focus on California, where more
than 260 local governments have published one or more CAPs since 2006. We
develop an annotated benchmark dataset of 17 San Diego County CAPs with over
1,800 extracted policies and associated attributes. Unlike prior efforts that rely
on small annotated corpora or industry-specific disclosures, our system explicitly
grounds every extracted element in its underlying PDF, ensuring transparency
and reducing hallucination in the produced dataset. Addressing these challenges
will enable large-scale comparative analyses of CAPs across jurisdictions world-
wide, supporting policymakers, sustainability officers, and hazard managers, and
accelerating climate adaptation and mitigation efforts.

1 Introduction

Climate action plans (CAPs) represent a growing class of gray policy literature: lengthy, heteroge-
neous PDFs produced by local governments that encode critical commitments for climate mitigation
and adaptation [Gandhi et al., 2024]. Their diversity in format, terminology, and availability makes
them difficult to retrieve, parse, and analyze at scale. Sample CAP pages illustrating this heterogeneity
are shown in Figure A1, highlighting challenges for automated information extraction. Despite their
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policy importance, CAPs remain largely inaccessible to large-scale comparative analysis, creating an
opportunity for natural language processing (NLP) to have real-world impact.

We propose a pipeline that combines agentic web retrieval with grounded information extraction
(IE). Using headless browsing, our system autonomously navigates local government websites to
surface CAPs that are often unindexed by search engines and unavailable to conventional scraping.
Once retrieved, CAPs are transformed into structured datasets through IE methods designed for
ecological validity: outputs are directly useful to policymakers and sustainability officers, while every
extracted element is linked back to its source passage in the PDF to ensure verifiability and reduce
hallucination.

From a research perspective, CAPs present unsolved challenges that make them an ideal testbed
for advancing NLP and IR. Retrieval must operate over dispersed, poorly indexed sources where
precision–recall trade-offs have tangible consequences. This extends work in the direction of
automatic dataset collection, as in Ma et al. [2025]. Information extraction is necessarily multimodal,
an area of active development, especially for vision-language models (VLMs, e.g. Wang et al. [2024],
Liu et al. [2024]). Evaluation must account for cases where multiple annotations are equally valid,
especially when policies are represented in tables or expressed in ambiguous spans. Addressing these
challenges directs progress in web-based agentic IR and document-focused work in NLP towards
gray policy literature domains and produces actionable tools for climate governance.

Novel contributions:

• CAP Ontology We develop a nested structured ontology that allows for standardized
representations of CAPs across jurisdictions (Figures A2, A3).

• Agentic retrieval of unindexed policy documents: Using headless browsing, our system
automatically navigates county and municipal websites to surface CAPs that are generally
not indexed by major search engines and inaccessible to basic scraping protocols.

• Grounded extraction for policy trustworthiness: Every extracted policy element is
explicitly linked to its source passage in the PDF, reducing hallucination and enabling
practitioners to verify outputs.

• Ecological validity and practitioner utility: Our dataset design emphasizes outputs that
are directly useful to sustainability officers, hazard managers, and policymakers, rather than
optimizing only for academic benchmarks.

• Calibrated evaluation thresholds: Conventional metrics (e.g., Cohen’s kappa) assume
rigid annotation consistency, but CAPs often admit multiple valid extractions. We propose
evaluation methods that reflect practitioner-relevant agreement standards.

2 Proposed Approach

Our pipeline for extracting structured information from Climate Action Plans (CAPs) has three
primary components: (1) web retrieval of dispersed PDF documents, (2) large language model (LLM)-
based information extraction with grounding in source passages (Figure A4), and (3) evaluation
through human annotation and agreement analysis (Figure A5).

Web Scraper. CAPs are often buried deep in municipal or county government websites and often
not indexed by search engines. To systematically collect them, we employ Selenium-driven headless
browsing to autonomously navigate and capture PDF documents. Metadata such as jurisdiction, pub-
lication year, and plan version are stored alongside each document, enabling transparent traceability
and jurisdiction-level comparisons. As future work, we plan to integrate agent-based web navigation
tools [Ma et al., 2023, Huang et al., 2024].

Information Extraction Task. The core of our approach is an LLM-based extraction pipeline that
processes CAPs at the page level. Earlier versions of our system used a text-only unimodal approach,
where we used the Adobe Acrobat API to convert PDFs into structured HTML and JSON, which
were then processed with OpenAI models and other LLMs. While this is a common approach in
document-based NLP, we found that the lack of multimodal processing rendered model results highly
inconsistent. Our current implementation instead renders page images and passes them to OpenAI’s
multimodal models, prompting them to extract policy statements and associated attributes (Figure A3).
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This variability in extraction accuracy reflects open questions in document-based NLP in how best to
process multimodal content [Deng et al., 2024].

Policies are represented using an ontology of nested fields that we developed in consultation with
climate policy experts (Figure A2). Each record consists of a root policy and associated attributes,
including: policy description, sector (e.g., transportation, buildings, waste), target year, quantitative
GHG reduction goal, cost allocations (residential, private-sector, municipal), and co-benefits (e.g.,
equity, resilience, public health). Extraction is explicitly grounded: every attribute is linked to the
original text span, table cell, or figure icon in the PDF. This allows practitioners to verify system
outputs and ensures transparency in downstream analyses.

A key technical challenge is the length of documents and the nesting structure of policies within CAPs,
which often contain hierarchical “goal–approach–action” relationships spread across documents that
often exceed 100 pages in length. To address this, we are experimenting with windowed page contexts
(e.g., combining two consecutive pages) and hierarchical labeling schemes. We are also developing
strategies for handling CAP-specific iconography (e.g., cost or benefit symbols, Figure A6) that
define attributes remotely within the document.

Evaluation. To ensure both accuracy and ecological validity, we evaluate our system against a
human-annotated benchmark of 17 San Diego CAPs with over 1,800 labeled policies. Labels were
created using Label Studio, with multiple annotators tagging the same documents to assess agreement.
In addition to standard metrics, we compute inter-annotator reliability (Cohen’s κ, Krippendorff’s α)
to quantify the inherent ambiguity of policy texts. Evaluation of the LLM outputs is then performed
relative to this annotated benchmark, with attention to both span-level overlap and attribute-level
correctness. We also assess trade-offs between precision and recall to reflect the practical needs
of policymakers: in some applications, high coverage of policies is preferred even at the cost of
additional noise, whereas in others strict precision is critical.

3 Expected Outcomes and Impact

Our proposed pipeline will deliver outputs of both immediate practical utility and long-term research
value. By making local CAPs and climate action policies accessible, structured, and verifiable, we
will enable new forms of comparative analysis and decision support.

Website. We will build a public-facing website that allows users to interactively explore climate
action policies. Users will be able to query policies by sector, timeframe, cost, or co-benefits,
and immediately view the corresponding passages in the original CAPs. This grounding enhances
transparency, reduces the risk of hallucination, and builds practitioner trust in AI-derived policy
databases. A screenshot of the prototype interactive website is shown in Figure A7.

Database. The structured policy database will expand over time from our San Diego benchmark set
to encompass all California CAPs and eventually U.S. and international plans. Each policy entry
will include attributes such as sector, emissions reduction targets, timeframes, responsible entities,
co-benefits, and costs (public and private). Linking structured attributes back to the original text
ensures accountability and provides a foundation for reproducible research.

Downstream Analyses. The resulting dataset will allow comparative, quantitative analysis of
local climate governance at unprecedented scale. For example, our pilot analyses reveal notable
trends in California CAPs (Figure A8). For example, over time, CAPs have placed increasing
relative emphasis on adaptation alongside mitigation, suggesting a growing recognition that projected
warming thresholds require both strategies (Figure A9). Metrics of CAP quality, e.g., fraction of
populated attributes per policy by CAP, are positively correlated with community wealth, suggesting
disparities in local government capacity and resources for climate planning (Figure A10). These kinds
of insights are directly relevant to forthcoming efforts such as California’s Fifth Climate Change
Assessment and the IPCC Special Report on Climate Change and Cities [IPCC, 2024], and illustrate
the potential of NLP to illuminate equity and effectiveness in climate policy.

4 Conclusion

By coupling retrieval, grounded information extraction, and calibrated evaluation, our system will
transform scattered, heterogeneous local climate action plans into structured, verifiable datasets. The
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resulting tools will support policymakers, sustainability officers, hazard managers, and researchers
in evaluating and improving local climate action, helping accelerate both mitigation and adaptation
worldwide.
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Appendix

Figure A1: Example pages from four San Diego County CAPs (Carlsbad, Del Mar, Encinitas, and the
City of San Diego). CAPs vary widely in format, with information often presented in nonstandard
tables, using symbols or icons whose definitions appear on other pages or chapters, making automated
information extraction especially challenging.
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Figure A2: A simplified representation of our ontology for structured representation of CAP policies.
The ontology organizes policy information into top-level tags (e.g., Emissions Reduction, Adaptation,
Time Frame, Benefit, Cost, etc.) with sub-tags, definitions, and representative examples. A hierarchi-
cal design enables consistent extraction and comparison of heterogeneous policy elements across
jurisdictions. By explicitly defining attributes such as hazards, quantities, co-benefits, and emissions
reduction metrics, the ontology provides both machine-actionable structure and practitioner-relevant
interpretability, bridging the gap between natural language text and standardized policy datasets.
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Figure A3: Illustration of the extraction setup for policy text. The prompt instructs the model to
identify nested structures of measures, actions, goals, policies, and strategies directly from the text,
enforcing exact-span fidelity. To structure responses, we provide the model with a JSON schema
derived from our ontology (excerpt shown). This schema specifies classes (e.g., Mechanism, Duration,
ClimateHazard, GHGEmission) and their associated attributes, ensuring that extracted policies are
represented consistently and with explicit links to mechanisms, timeframes, hazards, and emissions
data. By constraining output to this ontology, the system produces machine-readable representations
of policies while retaining their hierarchical and semantic relationships.
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Figure A4: Mock Docling output. Example of structured JSON representation for a climate action
plan policy (Measure E-6: Income-Qualified Solar PV Program), showing extracted attributes
(emissions reduction, costs, benefits), hierarchical policy structure (existing efforts, implementation
actions), and provenance links to the original text.
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Figure A5: In addition to the 17 San Diego County CAPs, for which all policies and attributes
were manually extracted, a subset of pages from other California CAPs were annotated in Label
Studio to evaluate model performance. Shown here are three examples: two annotated by climate
experts and one by OpenAI GPT-4o. The two human annotators produced notably different label sets,
underscoring the need to calibrate performance thresholds rather than relying on fixed values from
the literature, which may not be appropriate in this context.
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Figure A6: Example from the City of Albany Climate Action and Adaptation Plan illustrating CAP-
specific iconography. Policy attributes such as costs, benefits, and co-benefits are encoded with icons
(bottom, p. 45), whose meanings are defined remotely elsewhere in the document (top, p. 35). This
highlights a key multimodal extraction challenge: text-only methods cannot recover these attributes,
whereas multimodal approaches must link icons across pages to correctly capture policy information.
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Figure A7: Streamlit prototype website for exploring structured CAPs. The application enables
users to browse extracted policies (top left), filter by locality, year, and page, and view structured
attributes. In this example, selecting “Electrify school buses” from the Solana Beach CAP reveals
implementation timeframes and emissions reduction quantities (bottom left). The right-hand panel
displays the source PDF with highlighted spans corresponding to extracted attributes, providing
explicit grounding and allowing users to verify outputs directly against the original document.
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Figure A8: Jurisdictions in California with and without CAPs as of 2022, colored by a CAP “quality
metric.” Cities (census-designated places) and counties with CAPs are shaded according to the
average fraction of policy attributes populated (e.g., sector, implementing agency, cost, emissions
reduction, co-benefits), while jurisdictions without CAPs are shown in gray. Insets highlight the
Bay Area and Los Angeles regions. The figure shows no clear geographic pattern in CAP quality,
suggesting that differences in plan completeness vary jurisdiction by jurisdiction rather than clustering
spatially.
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Figure A9: Temporal trend in the share of adaptation policies in California CAPs. Each point
represents a CAP, with the adaptation metric defined as the fraction of its policies classified as
adaptation rather than mitigation. Classification was performed by prompting GPT-4o to label policy
descriptions as “adaptation” (e.g., wildfire defensible space), “mitigation” (e.g., home electric vehicle
charging incentives), or “both” (e.g., tree planting for sequestration and heat reduction). The fitted
regression line shows a modest but steady increase in adaptation focus over time, suggesting that
local governments are devoting increasing attention to climate impacts alongside emissions reduction.
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Figure A10: Relationship between CAP quality and community wealth. CAP quality is measured as
the average fraction of populated attributes per policy (e.g., inclusion of sector, responsible entity,
cost, emissions reduction, and co-benefits). Per capita income is shown on a log scale. The positive
association indicates that wealthier jurisdictions tend to produce more complete and detailed climate
action plans, suggesting disparities in local government capacity and resources for climate planning.
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