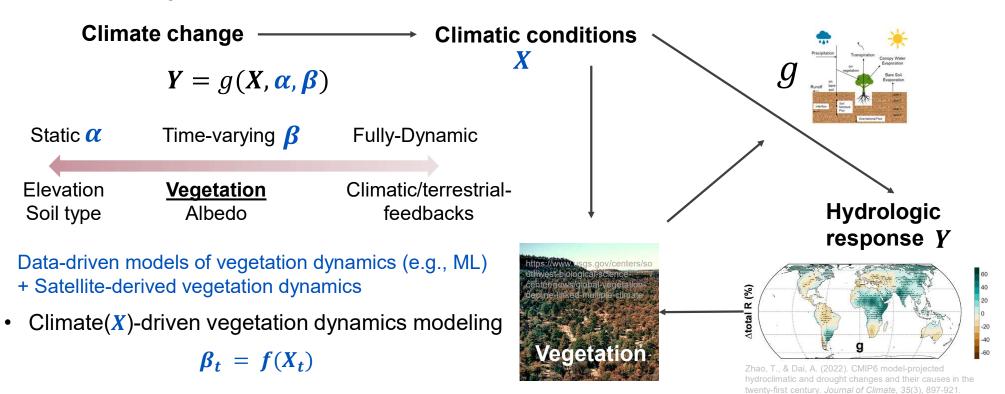
Pure and Physics-encoded Spatiotemporal Deep Learning for Climate-Vegetation Dynamics

Qianqiu Longyang (<u>qlongyang@ku.edu</u>), Kansas Geological Survey, The University of Kansas Ruijie Zeng, Arizona State University

Introduction

- Vegetation regulates land surface water and energy exchanges.
- Accurate representation of climate-vegetation feedback is crucial for reliable climate projections and water resource management.



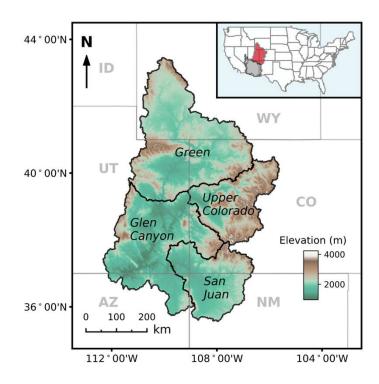
Limitations of current approaches exist

Traditional Process-Based Vegetation Models	Existing Deep Learning (DL) Applications
Oversimplified parameterizations - monthly climatology fails to capture extremes and trends; fixed plant functional types insufficiently represent real diversity	Black-box limitations - lacks interpretability and physical consistency for scientific understanding
Structural errors - rules derived from point- scale observations do not scale well	Forecast-focused instead of projection- focused - incorporates prior vegetation states, unsuitable for climate impact studies
Limited spatiotemporal interactions - prioritize vertical atmospheric feedbacks while neglecting horizontal processes	Limited spatially distributed applications - point-scale or flattened inputs overlook heterogeneity and risk overfitting

• We aim to develop a <u>climate-driven</u>, <u>spatially distributed</u> deep learning framework for <u>daily</u>-scale vegetation dynamics.

Study Area and Dataset

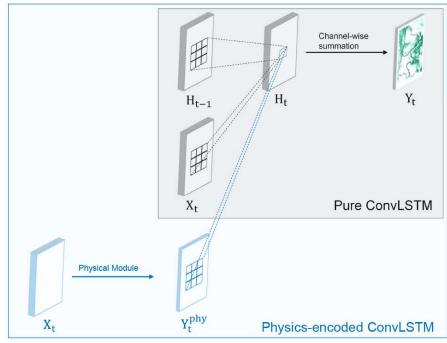
- Upper Colorado River Basin (UCRB) is a critical water source region with diverse hydroclimatic gradients and complex vegetation dynamics
- Climate data: daily precipitation, temperature, radiation, and humidity from NLDAS-2 at 1/8° resolution, providing consistent forcing inputs across CONUS
- Vegetation data: GLOBMAP Leaf Area Index (LAI) at 0.073° resolution, with global coverage from 1981 onward at half-monthly to 8-day intervals
- Data split: temporal split, training (1981-2001), validation (200-2008), testing (2009-2016)



Methods

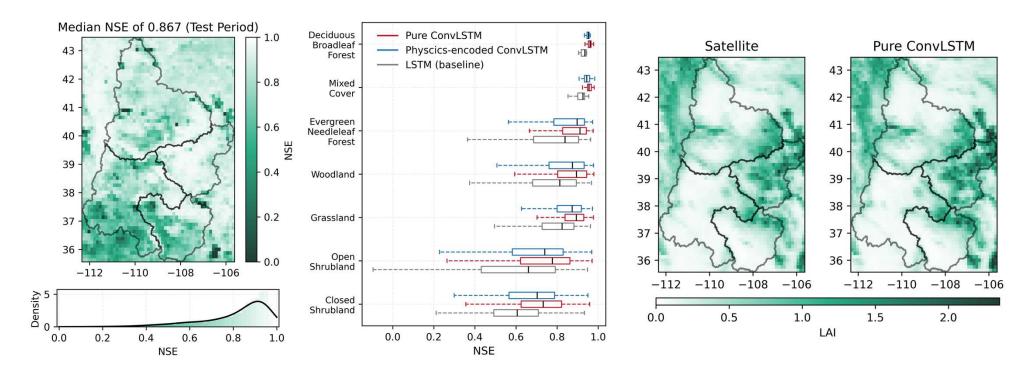
 A one-layer ConvLSTM model with 16 filters is employed, framing LAI prediction as a spatiotemporal sequence-to-sequence problem to process 2D climate inputs and output LAI maps

- Two variants are implemented: (1) Pure ConvLSTM using only climate forcings; (2) Physics-Encoded ConvLSTM that integrates process-based LAI simulation as an additional input, acting as a biascorrector
- Models are trained on 63×54 spatial grids using the AdamW optimizer with early stopping to ensure robust learning and prevent overfitting



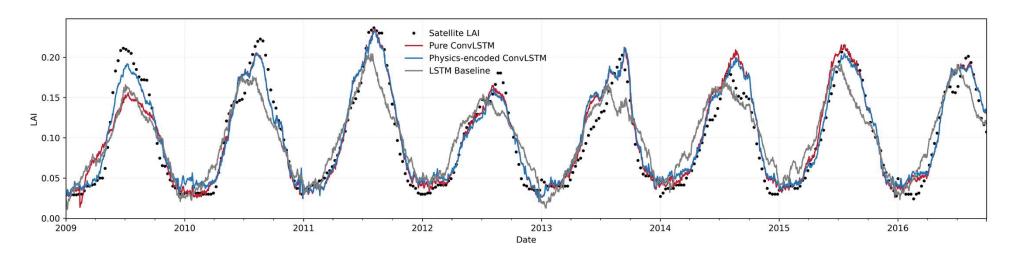
Results

 Pure ConvLSTM achieves the highest accuracy (median NSE: 0.867), followed by physicsencoded ConvLSTM (0.839), both substantially outperforming the LSTM baseline (0.787)



Results

- Pure ConvLSTM excels at capturing both spatial patterns and temporal dynamics across diverse vegetation types, demonstrating its ability to learn complex ecohydrological interactions
- The physics-encoded variant shows enhanced stability in water-limited regions and reduces unrealistic fluctuations, proving valuable for reliable extrapolation in climate projection scenarios



Future Work: Knowledge-guided DL

- This spatially distributed deep learning framework enables more reliable vegetation and water resources projections under climate change
- However, translating domain expertise to guide the design of interpretable, trustworthy scientific models still remains an open and nontrivial research challenge

