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« Climate(X)-driven vegetation dynamics modeling

Introduction

Vegetation regulates land surface water and energy exchanges.

Accurate representation of climate-vegetation feedback is crucial for reliable climate projections and water

resource management.
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Limitations of current approaches exist

Traditional Process-Based Vegetation
Models

Existing Deep Learning (DL) Applications

Oversimplified parameterizations - monthly
climatology fails to capture extremes and
trends; fixed plant functional types
insufficiently represent real diversity

Black-box limitations - lacks interpretability
and physical consistency for scientific
understanding

Structural errors - rules derived from point-
scale observations do not scale well

Forecast-focused instead of projection-
focused - incorporates prior vegetation
states, unsuitable for climate impact studies

Limited spatiotemporal interactions -
prioritize vertical atmospheric feedbacks while
neglecting horizontal processes

Limited spatially distributed applications -
point-scale or flattened inputs overlook
heterogeneity and risk overfitting

« We aim to develop a climate-driven, spatially distributed deep learning framework for daily-

scale vegetation dynamics.




Study Area and Dataset

* Upper Colorado River Basin (UCRB) is a critical
water source region with diverse hydroclimatic
gradients and complex vegetation dynamics

« Climate data: daily precipitation, temperature,
radiation, and humidity from NLDAS-2 at 1/8°

resolution, providing consistent forcing inputs across
CONUS

« Vegetation data: GLOBMAP Leaf Area Index (LAI)
at 0.073° resolution, with global coverage from 1981
onward at half-monthly to 8-day intervals

« Data split: temporal split, training (1981-2001),
validation (200-2008), testing (2009-2016)
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Methods

A one-layer ConvLSTM model with 16 filters is employed, framing LAI prediction as a

spatiotemporal sequence-to-sequence problem to process 2D climate inputs and output LA

maps

« Two variants are implemented: (1) Pure
ConvLSTM using only climate forcings; (2)
Physics-Encoded ConvLSTM that
integrates process-based LAl simulation as
an additional input, acting as a bias-
corrector

* Models are trained on 63x54 spatial grids
using the AdamW optimizer with early

stopping to ensure robust learning and
prevent overfitting
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Results

* Pure ConvLSTM achieves the highest accuracy (median NSE: 0.867), followed by physics-
encoded ConvLSTM (0.839), both substantially outperforming the LSTM baseline (0.787)
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Results

« Pure ConvLSTM excels at capturing both spatial patterns and temporal dynamics across
diverse vegetation types, demonstrating its ability to learn complex ecohydrological
interactions

« The physics-encoded variant shows enhanced stability in water-limited regions and reduces
unrealistic fluctuations, proving valuable for reliable extrapolation in climate projection

scenarios
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Future Work: Knowledge-guided DL

This spatially distributed deep
learning framework enables more
reliable vegetation and water
resources projections under
climate change

However, translating domain
expertise to guide the design of
interpretable, trustworthy
scientific models still remains an
open and nontrivial research
challenge
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