Deep Learning for Climate-Vegetation Dynamics

Introduction

« Vegetation regulates land surface water and energy exchanges

« Accurate representation of climate-vegetation feedback is crucial for
reliable climate projections and water resource management

« Limitations of current approaches exist.

Traditional Process-Based
Vegetation Models

Existing Deep Learning (DL)
Applications

Oversimplified parameterizations -

monthly climatology fails to capture
extremes and trends; fixed plant
functional types insufficiently
represent real diversity

Black-box limitations - lacks
interpretability and physical
consistency for scientific
understanding

Structural errors - rules derived

from point-scale observations do not

scale well

Forecast-focused instead of
projection-focused - incorporates
prior vegetation states, unsuitable
for climate impact studies

Limited spatiotemporal
interactions - prioritize vertical
atmospheric feedbacks while
neglecting horizontal processes

Limited spatially distributed
applications - point-scale or
flattened inputs overlook
heterogeneity and risk overfitting

 We aim to develop a climate-driven, spatially distributed deep learning
framework for daily-scale vegetation dynamics.

Study Area and Dataset

« Upper Colorado River Basin (UCRB) is a critical water source region with
diverse hydroclimatic gradients and complex vegetation dynamics
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Location of Upper Colorado River Basin (UCRB)
and subbasins

Climate data: daily precipitation,
temperature, radiation, and humidity
from NLDAS-2 at 1/8° resolution,
providing consistent forcing inputs
across CONUS

Vegetation data: GLOBMAP Leaf
Area Index (LAI) at 0.073° resolution,
with global coverage from 1981
onward at half-monthly to 8-day
Intervals

Data split: temporal split, training
(1981-2001), validation (200-2008),
testing (2009-2016)
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Methods

A one-layer ConvLSTM model with 16 filters is employed, framing LAI
prediction as a spatiotemporal sequence-to-sequence problem to
process 2D climate inputs and output LAl maps
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Two variants are implemented: (1) Pure ConvLSTM using only climate
forcings; (2) Physics-Encoded ConvLSTM that integrates process-based
LAI simulation as an additional input, acting as a bias-corrector

Models are trained on 63x54 spatial grids using the AdamW optimizer
with early stopping to ensure robust learning and prevent overfitting

Results and Impact

Pure ConvLSTM achieves the highest accuracy (median NSE: 0.867),
followed by physics-encoded ConvLSTM (0.839), both substantially
outperforming the LSTM baseline (0.787)

Pure ConvLSTM excels at capturing both spatial patterns and temporal
dynamics across diverse vegetation types, demonstrating its ability to
learn complex ecohydrological interactions

The physics-encoded variant shows enhanced stability in water-limited
regions and reduces unrealistic fluctuations, proving valuable for reliable
extrapolation in climate projection scenarios

This spatially distributed deep learning framework enables more reliable
vegetation and water resources projections under climate change,
bridging Al and Earth science to support climate adaptation strategies
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(d)

(a) Spatial distribution and probability density of NSE for the pure ConvLSTM over the study area during the test period
(2009-2016); (b) Boxplots of NSE for the LSTM baseline, pure ConvLSTM, and physics-encoded ConvLSTM across
dominant vegetation types; (c) Example spatial comparison between pure ConvLSTM-simulated LAl and satellite-derived
LAl on May 9, 2014; (d) Example comparisons of simulated vegetation dynamics (Open Shrubland) from the LSTM
baseline, pure ConvLSTM, and physics-encoded ConvLSTM during the test period.

Future Work: Knowledge-guided DL
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