
Pure and Physics-encoded Spatiotemporal 
Deep Learning for Climate-Vegetation Dynamics

Introduction

• Two variants are implemented: (1) Pure ConvLSTM using only climate 
forcings; (2) Physics-Encoded ConvLSTM that integrates process-based 
LAI simulation as an additional input, acting as a bias-corrector

• Models are trained on 63×54 spatial grids using the AdamW optimizer 
with early stopping to ensure robust learning and prevent overfitting

• Vegetation regulates land surface water and energy exchanges

• Accurate representation of climate-vegetation feedback is crucial for 
reliable climate projections and water resource management

• Limitations of current approaches exist.

Methods
• A one-layer ConvLSTM model with 16 filters is employed, framing LAI 

prediction as a spatiotemporal sequence-to-sequence problem to 
process 2D climate inputs and output LAI maps

Study Area and Dataset

Future Work: Knowledge-guided DL

(a) Spatial distribution and probability density of NSE for the pure ConvLSTM over the study area during the test period 
(2009-2016); (b) Boxplots of NSE for the LSTM baseline, pure ConvLSTM, and physics-encoded ConvLSTM across 

dominant vegetation types; (c) Example spatial comparison between pure ConvLSTM-simulated LAI and satellite-derived 
LAI on May 9, 2014; (d) Example comparisons of simulated vegetation dynamics (Open Shrubland) from the LSTM 

baseline, pure ConvLSTM, and physics-encoded ConvLSTM during the test period.

Location of Upper Colorado River Basin (UCRB) 
and subbasins
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Traditional Process-Based 
Vegetation Models

Existing Deep Learning (DL) 
Applications

Oversimplified parameterizations -
monthly climatology fails to capture 
extremes and trends; fixed plant 
functional types insufficiently 
represent real diversity

Black-box limitations - lacks 
interpretability and physical 
consistency for scientific 
understanding

Structural errors - rules derived 
from point-scale observations do not 
scale well

Forecast-focused instead of 
projection-focused - incorporates 
prior vegetation states, unsuitable 
for climate impact studies

Limited spatiotemporal 
interactions - prioritize vertical 
atmospheric feedbacks while 
neglecting horizontal processes

Limited spatially distributed 
applications - point-scale or 
flattened inputs overlook 
heterogeneity and risk overfitting

• We aim to develop a climate-driven, spatially distributed deep learning 
framework for daily-scale vegetation dynamics.

• Climate data: daily precipitation, 
temperature, radiation, and humidity 
from NLDAS-2 at 1/8° resolution, 
providing consistent forcing inputs 
across CONUS

• Vegetation data: GLOBMAP Leaf 
Area Index (LAI) at 0.073° resolution, 
with global coverage from 1981 
onward at half-monthly to 8-day 
intervals

• Data split: temporal split, training 
(1981-2001), validation (200-2008), 
testing (2009-2016)

• Upper Colorado River Basin (UCRB) is a critical water source region with 
diverse hydroclimatic gradients and complex vegetation dynamics Results and Impact

• Pure ConvLSTM achieves the highest accuracy (median NSE: 0.867), 
followed by physics-encoded ConvLSTM (0.839), both substantially 
outperforming the LSTM baseline (0.787)

• Pure ConvLSTM excels at capturing both spatial patterns and temporal 
dynamics across diverse vegetation types, demonstrating its ability to 
learn complex ecohydrological interactions

• The physics-encoded variant shows enhanced stability in water-limited 
regions and reduces unrealistic fluctuations, proving valuable for reliable 
extrapolation in climate projection scenarios

• This spatially distributed deep learning framework enables more reliable 
vegetation and water resources projections under climate change, 
bridging AI and Earth science to support climate adaptation strategies
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