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Abstract

Vegetation is a central hub of water, energy, and carbon exchanges, making its
accurate spatiotemporal modeling essential for projecting climate impacts. Ex-
isting models for vegetation dynamics often suffer from physical simplifications
or limited treatment of spatiotemporal interactions. We present a spatially dis-
tributed framework for daily-scale climate-vegetation dynamics, comparing: (1)
a Long Short-Term Memory (LSTM) baseline with flattened spatial inputs; (2) a
pure Convolutional LSTM (ConvLSTM) that captures spatial heterogeneity and
temporal dependencies while implicitly representing ecohydrological states; and
(3) a physics-encoded ConvLSTM that serves as a bias-corrector of physically
simulated Leaf Area Index (LAI). ConvLSTM architectures outperform the LSTM
baseline, and the physics-encoded variant underscores the promise of combining
physical knowledge with data-driven models. This framework supports more re-
liable vegetation projections and highlights the potential of closer collaboration
between AI researchers and Earth system scientists to develop trustworthy tools
for climate adaptation and mitigation.

1 Introduction

Vegetation regulates atmosphere-land exchanges of water and energy [7], drives the global carbon
cycle [18], and supports ecosystem adaptation to a changing climate [1]. Accurate representation of
vegetation dynamics and their interactions with climate conditions is therefore essential for reliable
projections of water resources, ecosystem productivity, and carbon balance. Intensifying climate
variability and extremes drive shifts in vegetation patterns across seasonal to interannual timescales.

However, most process-based land surface models (LSM) and large-scale hydrological models often
struggle to represent such variability. Many either (1) prescribe multi-year average monthly vegetation
climatology (e.g., Noah LSM [4]), which fails to capture interannual responses, or (2) employ
simplified dynamic vegetation modules (e.g., Noah-MP [17]), which suffer from structural errors and
parametric uncertainties. These limitations restrict the ability to resolve fine-scale spatiotemporal
responses of vegetation to climate drivers, which can propagate through the modeling chain, leading
to biased projections under future climate scenarios.

Recent studies have applied deep learning to predict vegetation dynamics [6, 21, 12, 22, 5, 11,
10, 2, 15]. While promising, many of these efforts process spatial inputs in a reduced form (e.g.,
flattening grids for LSTM networks), which may overlook the full spatiotemporal interactions between
environmental drivers and vegetation responses. Fully distributed applications of spatiotemporal deep
learning in vegetation dynamics modeling remain limited and are mostly designed for short-term
forecasting that incorporates previous vegetation states as inputs. By contrast, climate-vegetation
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modeling driven solely by climate variables, which can support broader examinations of climate-
vegetation interactions and future vegetation projections, has received limited attention.

In this paper, we develop a fully climate-driven, spatially distributed deep learning framework for
daily-scale vegetation dynamics. Our main contributions are: (1) introducing two modeling strategies,
a pure deep learning approach and a physics-encoded variant that applies deep learning to correct
biases in physically simulated vegetation dynamics; (2) evaluating these against an LSTM network
baseline in which grid-based spatial inputs are flattened at each time step. This work demonstrates the
potential of advanced spatiotemporal neural networks for vegetation modeling and presents a feasible
framework for combining data-driven and physics-based approaches to support climate adaptation
and mitigation strategies.

2 Data Description

The Upper Colorado River Basin (UCRB, Figure 1) is selected as the testbed due to its diverse
hydroclimatic gradients, complex vegetation dynamics, and critical importance for water resources
amid increasing drought and climate extremes. This makes it well suited for evaluating the proposed
climate-vegetation modeling framework. Although the study focuses on the UCRB, all datasets
can be retrieved across the contiguous United States (CONUS), enabling scalable application of the
proposed models to larger regional or continental scales.

Figure 1: Location of Upper Colorado River Basin (UCRB) and subbasins.

Daily climate variables, including precipitation, near-surface air temperature, surface pressure,
specific humidity, surface downward longwave and shortwave radiation, and wind speed, are obtained
from NLDAS-2 [20] at 1/8◦ spatial resolution across CONUS. Vegetation dynamics are represented
by the GLOBMAP LAI dataset [13], which offers continuous global coverage at 0.073◦ resolution,
with half-monthly observations for 1981–2000 and 8-day intervals from 2001 onward. The satellite
LAI data is resampled to match the climate forcing resolution. The dataset is split temporally for
model development: 1981–2001 for training, 2002–2008 for validation, and 2009–2016 for testing.

3 Methods

We employ a one-layer Convolutional Long Short-Term Memory (ConvLSTM) model [19] with
a hidden size of 64 to simulate daily LAI dynamics from climate forcing variables. From a deep
learning perspective, this task can be framed as a video sequence-to-sequence problem, where climate
variable images serve as input frames and the corresponding LAI images are output frames.

Model inputs consist of daily climate variables, organized as spatial grids clipped to 63×54 images.
The output is the predicted LAI map at the corresponding temporal resolution.

Two model configurations are implemented (Figure 2): (1) pure ConvLSTM, trained solely on climate
forcings to predict LAI; and (2) physics-encoded ConvLSTM variant, which integrates LAI simulated
from a process-based vegetation model (combining the Farquhar photosynthesis model [8, 3] and the
Jarvis stomatal conductance model [9]) as an additional input channel, with ConvLSTM serving as a
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bias-corrector to adjust the physically simulated LAI. Key parameters of the physical module are
learnable, enabling joint optimization of process-based and data-driven components.
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Figure 2: Architecture of our proposed framework showing the pure ConvLSTM and physics-encoded
ConvLSTM for climate-vegetation dynamics modeling.

For the pure ConvLSTM, all inputs are normalized prior to training; in the physics-encoded variant,
normalization is applied internally after the physical computation. All models are trained using the
AdamW [14] optimizer and early stopping is applied to prevent overfitting.

4 Results

We compare three models: (1) a one-layer LSTM baseline with flattened spatial inputs (with hidden
size of 64), (2) the pure ConvLSTM, and (3) the physics-encoded ConvLSTM. All models are
trained, validated, and tested against remotely sensed LAI. Model performance is evaluated using
the Nash-Sutcliffe Efficiency (NSE) [16], calculated for each grid cell along the temporal dimension
to assess how well the models capture sub-monthly scale temporal dynamics (Figure 3). NSE is
a normalized statistic that measures the relative magnitude of residual variance compared to the
variance of the observed data. Higher NSE values correspond to better predictive performance and a
value of 1 indicates perfect agreement between predictions and observations.

The pure ConvLSTM achieves the highest predictive skill, with spatial NSE maps showing consis-
tently superior performance in diverse vegetation types (Figure 3b) and a median NSE of 0.867,
compared to 0.839 for the physics-encoded ConvLSTM and 0.787 for the LSTM baseline. It repro-
duces observed LAI spatial patterns and temporal dynamics with high fidelity (Figures 3c-d). This
likely reflects its ability to implicitly represent ecohydrological state variables (e.g., soil moisture,
carbon pool) in its hidden states.

The physics-encoded ConvLSTM also outperforms the LSTM baseline across diverse vegetation
types and reduces the seasonal phase shifts in LAI seen in the baseline (Figure 3d). It demonstrates
particular advantages in certain water-limited regions (e.g., shrublands during the spring and summer
of 2009; see Figure 3d), where purely data-driven models tend to produce unrealistic fluctuations. The
incorporation of physical constraints appears to enhance stability under complex vegetation-climate
interactions, indicating potential for more reliable application in climate projection scenarios, where
extrapolation beyond the historical training range is often unavoidable.

Nevertheless, the physics-encoded ConvLSTM does not match the pure ConvLSTM in overall
accuracy. This may be due to the trade-off between flexibility and constraint: the model must jointly
optimize both ConvLSTM weights and physical parameters, and errors or simplifications in the
physical model can propagate into the hybrid system. Additionally, the optimization process is more
complex because the physical parameters must be learned from scratch, which can slow convergence.
Even when initialized with plant functional type (PFT)-based parameter sets, uncertainties arising
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Figure 3: (a) Spatial distribution and probability density of NSE for the pure ConvLSTM over the
study area during the test period (2009–2016); (b) Boxplots of NSE for the LSTM baseline, pure
ConvLSTM, and physics-encoded ConvLSTM across dominant vegetation types; (c) Example spatial
comparison between pure ConvLSTM-simulated LAI and satellite-derived LAI on May 9, 2014; (d)
Example comparisons of simulated vegetation dynamics (Open Shrubland) from the LSTM baseline,
pure ConvLSTM, and physics-encoded ConvLSTM during the test period.

from inaccurate vegetation classification can introduce unrealistic constraints. This limitation is
common in physics-based deep learning for vegetation dynamics, as process-based vegetation models
often rely heavily on PFTs, which can reduce model flexibility and overall performance. Future work
could address this by introducing dynamic PFT representations to enhance accuracy and adaptability.

5 Conclusions and impacts

This study develops and evaluates a fully climate-driven, spatially distributed deep learning frame-
work for simulating daily vegetation dynamics, comparing a pure ConvLSTM, a physics-encoded
ConvLSTM, and an LSTM baseline. The pure ConvLSTM achieves the highest predictive accuracy,
capturing fine-scale spatiotemporal variability across diverse vegetation types. The physics-encoded
variant, while slightly less accurate than pure ConvLSTM, demonstrates improved stability in water-
limited regions and offers greater potential for reliable application to climate projection scenarios,
where extrapolation beyond the historical record is inevitable.

From a climate change perspective, accurate simulation of vegetation-climate interactions is essential
for projecting future water availability, ecosystem resilience, and carbon cycle feedbacks. Purely
data-driven models can excel within historical domains but may struggle under nonstationary climate
conditions. Incorporating physical constraints can help mitigate these risks, enabling more robust
long-term projections and supporting climate adaptation and mitigation strategies. The proposed
framework is broadly applicable wherever gridded climate forcings are available, making it scalable
to continental and global applications.
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