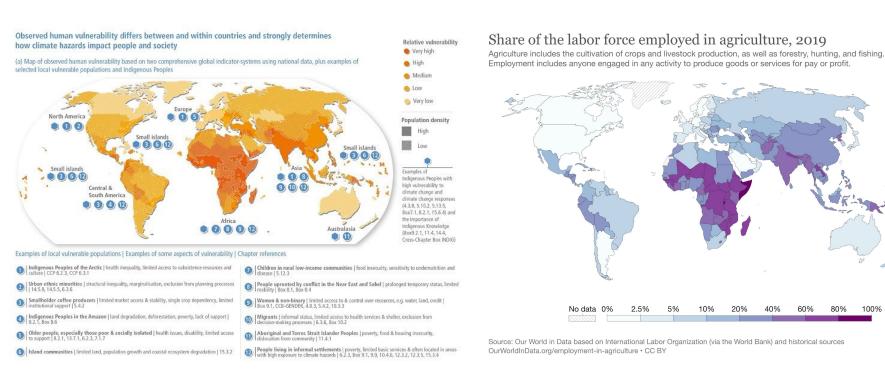


Scalable Country-Level Crop Yield Modeling for Food Security and Risk Mitigation

Tackling Climate Change with Machine Learning

NeurIPS, Dec 2025

Andrew Hobbs


Benson Adomako

Addi Joof

Jesse Anttila-Hughes

University of San Francisco, Department of Economics

Many of the world's most climate vulnerable are farmers

Our World in Data

Sources: IPCC: Our World in Data

Problem

- When crop yields are poor, farmers must rely on costly coping strategies, including reduced food consumption, removing children from school, or selling productive assets.
- Accurate, timely data on regional crop yields is essential to effective agricultural insurance, famine early warning, and government programs.
- Developing accurate crop yield measures requires costly ground-truth data
 - Precisely georeferenced farm yield data are scarce in developing countries
 - Existing measures are often not tested for accuracy.

Our Approach

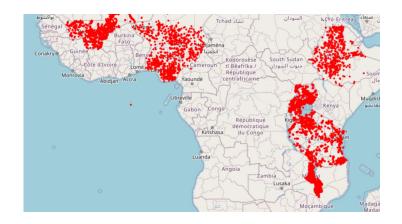
- We combine reported yields existing household survey data from the World Bank's Living Standards Measurement Survey (LSMS) with remotely sensed satellite data on climate and environmental features from six African countries
- Apply machine learning techniques to develop a predictive index of maize production within each country and across countries.
- Develop a promising new approach for generating accurate regional yield estimates for smallholder farmers.

Data

Crop Yields (Maize): World Bank LSMS-ISA Data from Nigeria, Uganda, Malawi, Tanzania, Mali, & Ethiopia

Croplands: NASA Global Food Security

Analysis Support Data (GFSAD)

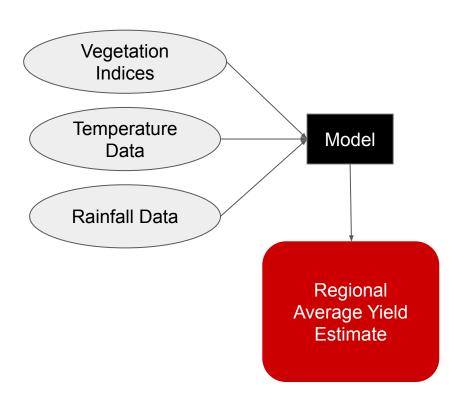

Vegétation Indices: NDVI, GCVI, and EVI

(LANDSAT) monthly maximum.

Growing/ Killing Degree Days, Temperature+ Soil Moisture: ECMWF ERA5

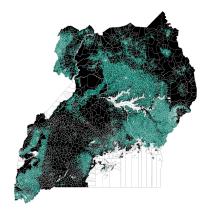
Precipitation: CHIRPS

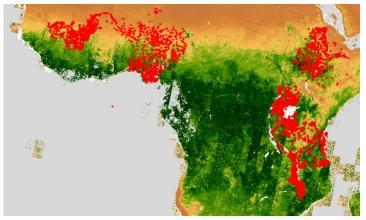
Total of \sim 30,000 observations in \sim 7,500 enumeration areas.

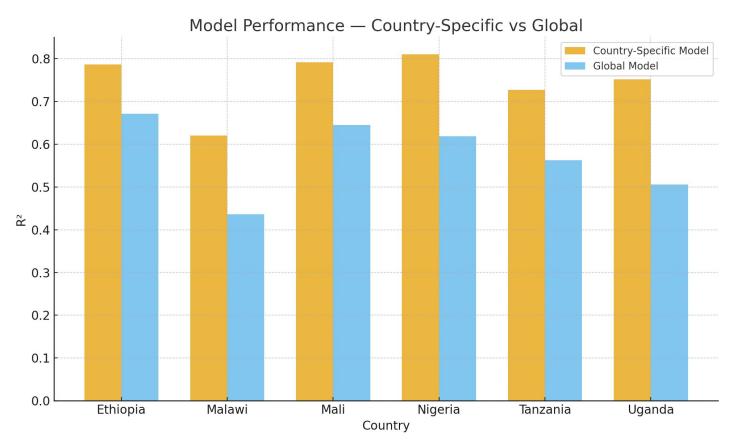


Why machine learning?

Multiple types of data tell us something about crop yields


- Vegetation indices
- Precipitation
- Temperature
- Root/ soil moisture


Combining these data into a single index of average crop yields in an area is complex and machine learning is well suited to this sort of task.


Linking satellite and survey data

- 1. Points indicate approximate center of 'enumeration area.'
- 2. For each enumeration area, collect all data within a 10km circle on cropland pixels.
- 3. Calculate spatial mean.
- Calculate monthly mean or max for 12 months leading to harvest.
- Link those data with LSMS survey data on crop yields from the same location.

Results: Country-specific and Global models

Conclusions

- Early results suggest reasonably good accuracy in all countries.
- Global (or continent-wide) model does nearly as well as country-specific model in many cases.
- Next steps:
 - Risk averse hyperparameter tuning (emphasize correctness in 'bad' years).
 - Test models on smaller, higher accuracy datasets with field-specific data.
 - Link predicted regional yields to health and economic outcomes from other surveys.
 - Try CNNs, giving the model pixel-level + foundation model data rather than spatially aggregated data.