Low-Power Weakly-Supervised Audio Detection for Real-World Mosquito Surveillance

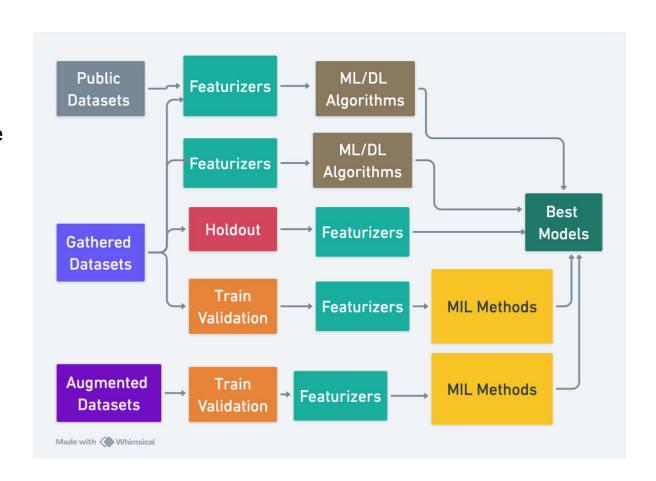
Danika Gupta (The Harker School), Ming Zhao (Arizona State University), Neha Rajendra Vadnere (Arizona State University)

NeurIPS Climate Change Al Workshop 2025

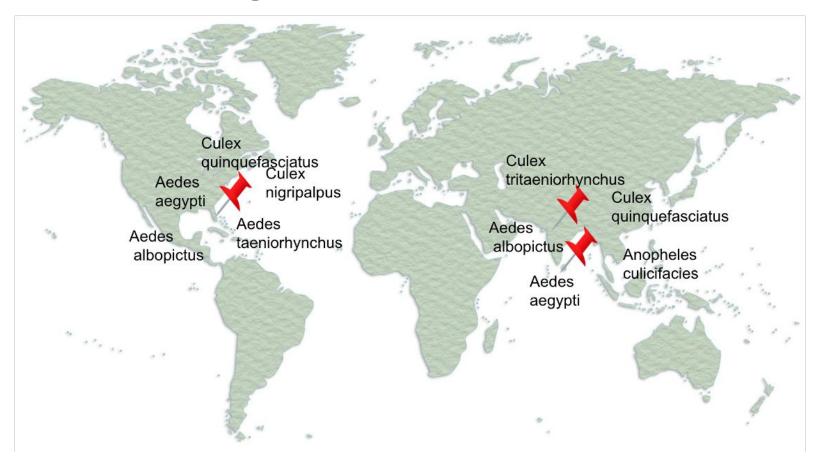
Problem

- Mosquito-borne diseases affect >3 billion worldwide.
- More than 600,000 fatalities annually. Example - recent outbreaks in China attributed to climate change.
- Identifying/tracking mosquito species essential for predicting disease, yet uses manual, subjective methods.
- Climate change further aggravates this challenge by altering habitats.

Outbreak News Today



Audio Detection – Benefits and Challenges


- Audio detectors can be implemented at lower power and cost (compared to video or image detectors, and have less privacy concerns or be impacted by lighting variations.
- Labeling audio requires expert entomologist support.
- Mosquito detection requires training on background data from affected locations. Existing research primarily focused on entomologist-labeled audio or video and mosquito classification

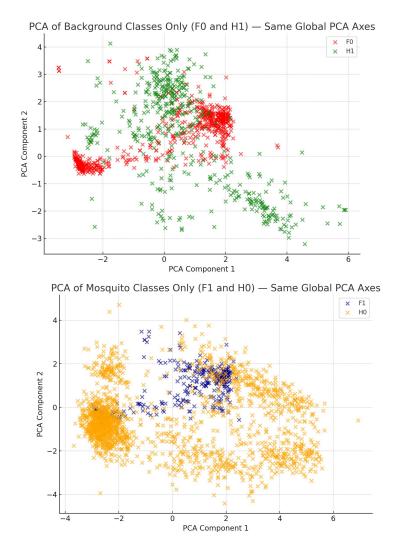
Methodology

- Citizen scientist video labeling coupled with audio classifiers.
- Leverage Multi Instance Learning to adapt to weak video labels for audio data.
- Varied MIL algorithms and librosa/YAMNet featurization, compared to ML and CNN baselines.
- HumBugDB used as supplemental dataset

Dataset Gathering

Preliminary Dataset

- 2144 videos gathered from florida, with preliminary results on 1200 videos.
- Videos span day/dusk/night – time of mosquito presence.
- Each video is 10s and manually labeled by citizen scientists, with 64.8% background and 35.2% mosquito.
- Audio preprocessed to filter out sounds from the mosquito attractant device.



Preliminary Results

Dataset	Labels	Method	Best AUC
HumbugDB	Entomologist	Spectral Features +	0.997
		Random Forest	
Florida	Video	Best Humbug Model	0.553
Florida	Video	Varied algorithms	0.673
		(Spectral Features	
		+ Random Forest,	
		YAMNet embed-	
		dings)	
Florida	Audio Expert	Spectral Features +	0.852
	•	Random Forest	
Florida	Video	Spectral Features +	0.726
		MIL Gated Attention	

Preliminary Results

 Comparing HumbugDB to our weakly labeled dataset reveals a strong distributional mismatch-Kolmogorov-Smirnov 100% of features significantly differing (p < 0.05),

Pathway To Impact

- >2800 mosquito variants, >330 implicated in human disease, but only a handful of datasets.
- We contribute the first multimodal audio/video time/location stamped mosquito surveillance dataset for researchers to explore multimodal surveillance and contextual metadata data integration.
- With 6000 more labeled video samples within 3 months, published testbed design (\$90) and citizen science labeling guide, repeatable testbeds can be set up for tailored mosquito surveillance with limited entomologist support.
- The approach may also benefit other domains critical to climate adaptation, but with limited data.

Code and Dataset will be available at at https://github.com/danikagupta/DeepMosquito as project proceeds

Thank you!