Low-Power Weakly-Supervised Audio Detection for Real-World Mosquito Surveillance

Danika Gupta (The Harker School) , Ming Zhao (Arizona State University), Neha Rajendra Vadnere (Arizona State University)

Problem

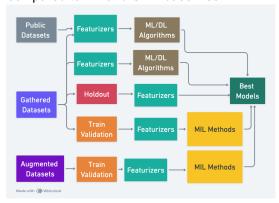
Mosquito-borne diseases affect >3 billion worldwide.

More than 600,000 fatalities annually. Recent outbreaks in China attributed to climate change

Identifying/tracking mosquito species essential for predicting disease, yet uses manual, subjective methods

Climate change further aggravates this challenge by altering habitats.

Audio Detection - Benefits and Challenges


Audio detectors can be implemented at lower power and cost (compared to video or image detectors) and have fewer privacy concerns and are less impacted by lighting variations.

Labeling audio requires expert entomologist support.

Mosquito detection requires training on background data from affected locations. Existing research primarily focused on entomologist-labeled audio or video and mosquito classification

Methodology

Citizen scientist video labeling coupled with audio classifiers. Leverage Multi-Instance Learning to adapt to weak video labels for audio data. Varied MIL algorithms and librosa/YAMNet featurization, compared to ML and CNN baselines

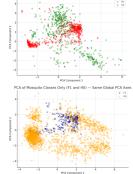
Dataset Gathering

Preliminary Dataset

2144 videos gathered from Florida, with preliminary results on 1200 videos. Videos span daytime, dusk, and nighttime of mosquito presence. Each video is 10 seconds long and manually labeled by citizen scientists, with 64.8% background and 35.2% mosquito.

Audio preprocessed to filter out sounds from the mosquito attractant device.

Supplemental Datasets


HumbugDB dataset (entomologist labeled mosquito audio and background sounds) were used as a baseline

Preliminary Results

Dataset	Labels	Method	Best AUC
HumbugDB	Entomologist	Spectral Features + Random Forest	0.997
Florida	Video	Best Humbug Model	0.553
Florida	Video	Varied algorithms	0.673
		(Spectral Features + Random Forest.	
		YAMNet embed-	
Florida	Audio Expert	dings) Spectral Features +	0.852
		Random Forest	
Florida	Video	Spectral Features + MIL Gated Attention	0.726

HumbugDB trained models score well on its test set, poorly on our dataset.

Comparing HumbugDB to our weakly labeled dataset reveals a strong distributional mismatch-Kolmogorov–Smirnov 100% of features significantly differing (p < 0.05),

Pathway to Impact

>2800 mosquito variants, >330 implicated in human disease, but only a handful of datasets. We contribute the first multimodal audio/video time/location stamped mosquito surveillance dataset) for researchers to explore multimodal surveillance and contextual metadata data integration. With 6000 more labeled video samples within 3 months, published testbed design (\$90) and citizen science labeling guide, repeatable testbeds can beset up for tailored mosquito surveillance with limited entomologist support. The approach may also benefit other domains critical to climate adaptation, but with limited data.