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Abstract

Climate change is expanding the geography and altering habitats of mosquitoes that
transmit Dengue, Zika, etc. For example, China’s first large-scale chikungunya out-
break in August 2025 underscores the urgency for scalable and adaptive mosquito
surveillance. Existing approaches often rely on expert entomologists or extensive
labeled datasets, making them poorly suited for rapid deployment in low-resource
settings. Our approach uses weak labels from time-aligned video recordings to train
audio classifiers via Multi Instance Learning (MIL). This approach combines local
data, citizen labelers and low power audio classification to enable rapid adaptation
to climate driven outbreaks. Early proof points suggest potential for MIL in audio
classification from mosquito video labels.

1 Introduction

Mosquito-borne diseases pose a significant public health challenge. In mid-2025, China experienced
its first-ever large-scale outbreak of chikungunya — with over 7,000 reported cases [29], primarily
where the population had little prior immunity. Authorities attributed the rapid spread to changing
regional climate dynamics, underscoring the pressing need for low-cost, lightweight mosquito
surveillance systems in at-risk regions. Malaria claims over 600,000 lives annually, while dengue
has seen a thirtyfold increase in incidences over the past fifty years [1], with a large variety of
mosquitoes spreading pathogens [3]. Climate change expands mosquito habitats, increasing the risk
[2]. Mosquito surveillance is crucial for outbreak prediction but is limited by manual, subjective
methods such as distribution maps based on expert-validated data [4], and field genetic studies [5].
Datasets like ABUZZ [6] and HumbugDB [7] have captured mosquito wingbeat sounds, and datasets
like MosquitoAlert [8] have pictures. While image datasets generate good classification results [31],
they are hard to gather in the wild without exposure to being bitten. Audio data is easier to gather
with citizen science and unmanned sensors, but tend to require expert support to label.

We target two challenges in practical mosquito identification, labeling local noisy mosquito data, and
low-power mosquito detection deployment. We use video labeling implementable by citizen scientists
without entomologist training, which is then used to train power-efficient audio classifiers. Video
classification in real time is not practical given the cost and power requirements, lighting dependencies
and privacy concerns. We exploit the link between video and audio, using video for labeling and audio
for classification, leveraging MIL applied to audio classification. We further propose to implement
such audio classifiers in low-power off-the-shelf hardware, enabling environment tailored sensors.
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2 Limitations of Existing Mosquito Research

Traditional strategies have largely required entomologist experts to monitor, identify, and ultimately
eradicate targeted mosquito populations [10]. Machine learning has shown promise in these endeavors
[9], from deep learning for identification, monitoring, and control [11], with visual methods in
[12,13,14] and acoustic and pseudo-acoustic techniques in [15,16,17,18,19,31]. Audio datasets
such as [6,7,20] are labeled via expert identification of caught mosquitoes or expert review of audio
data. Classification via such datasets generates high accuracy and precision [30]. Meta-datasets like
MACSFeD provide aggregated species-specific wingbeat and behavioral traits, valuable for tuning
detection systems [21]. However, these datasets are best for classifying mosquitoes types, while our
first task is to identify mosquito presence. Only [7] provides background samples and our experiments
have revealed that classifiers trained on it do poorly in other locales. The ideal scenario would gather
data from the target locale, label each sound snippet, and create a custom classifier. This however
requires trained labelers, impractical for many low resource scenarios.
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3 Methodology

Our methodology (Figure[T)) gathers local video labeled by citizen scientists trained to recognize
mosquito movement (zig-zag etc.), strengthened via inter-rater reliability. The video labels are
leveraged for audio classification. The challenge is that seeing a mosquito does not imply hearing it
or vice versa, but mosquito sound is likely in temporally close audio. Given this, we explore MIL to
extract the signals within audio instances in a bag if the entire bag is labeled mosquito. We evaluate
MIL by comparing single instance approaches using public data [6,7] with MIL variants trained both
our gathered data and augmented data integrating contextual information.

To our knowledge, we are the first to use MIL in this way, so we have selected MIL variants likely to be
useful where a bag contains a time ordered sequence of audio instances whose overall video showed
one or more mosquitoes. We chose Attention-based MIL [23] which assigns importance weights to
instances, targeting sparse key events like occasional mosquito sounds in a noisy bag, Gated Attention
MIL which adds a nonlinear gating mechanism to capture context-dependent audibility, CLAM [24]
which integrates attention pooling with clustering constraints to detect temporal or spatial bursts of
events, TransMIL [26] which captures long-range dependencies between instances, and Temporal
MIL [27] which preserves the chronological order of instances to exploit evolving sound patterns.
Other architectures, such as [25, 28] may also be worth evaluating. We have selected featurization
options including extracting average spectral, cepstral and rhythmic features, generating overlapping
log-mel spectrogram slices that preserve the fine-grained time—frequency structure for each clip (both
via [32]), YAMNet featurization [33] and MEL spectrograms. We also plan to augment the dataset
with synthetic bags containing known mosquito sounds from [6-8], specific to mosquitoes known to
be present in each region. The best models are compared against a holdout set from our testbed. An
ablation study can help isolate impact of featurization and model techniques. The methodology can
be further improved, for example by helping citizen scientists distinguish between mosquitoes and
known regional insects, experimentation with a range of audio/video capture devices and attractant
mechanisms (such as those used in [7]), and backfilling with expert validation of sample data points.

We have established testbeds in Florida (United States), Uttar Pradesh (India), Colombo (Sri Lanka),
where at least six known mosquito types (Aedes aegypti, Aedes albopictus, Culex quinquefascia-



tus, Culex nigripalpus, Aedes taeniorhynchus, and Anopheles stephensi) spread dengue, Malaria,
chikungunya, West Nile, St. Louis encephalitis, lymphatic filariasis, and Japanese encephalitis.

4 Initial Proof Points

We have gathered 2000 10s videos from Florida using Wyze Cam Pan v3 [22], a weather-resistant
1080p HD camera with integrated time-aligned audio recording. To date, 1200 video snippets
have been manually labeled (64.8% background and 35.2% mosquito). Each snippet was filtered
of sounds that could be caused by the attractant trap [23] (via filter and interpolation techniques
[34,35]). Comparing [7] to our weakly labeled dataset reveals a strong distributional mismatch
with Kolmogorov—Smirnov showing 100% of features significantly differing (p < 0.05), with top
discriminating features exhibiting near-zero overlap, confirmed by PCA projections. Figure [2] further
shows that while average spectral value featurization and Random Forest generate high AUC on [7],
this model has very poor results on the Florida dataset. Classification via our weak labels and a range
of ML and YAMNet methods revealed best AUC of 0.67. Expert audio labeling of the Florida data
gave AUC of 0.852. Multi-instance audio classification (bags of 1s snippets corresponding to the 10s
video label) shows AUC of 0.726 in with Gated Attention MIL and similar results with MIL variants
(skipped for space). While not conclusive, the results suggest necessity for local data rather than sole
reliance on clean datasets, and suggest that MIL has potential to extract from weak labels what other
methods can with strong labels. Sound acquisition, spectral featurization and MIL inference have
been implemented on Raspberry PI 4 [36] using Python and ONNX [37] with inference taking less
than 2ms, providing supporting evidence of viability in low power settings.

5 Pathway to Impact

There are >2800 mosquito variants, of which >330 are implicated in human disease [41], but only
a handful of datasets. Our published dataset (to our knowledge the first multimodal audio/video
time/location stamped mosquito surveillance dataset) enables researchers to explore multimodal
surveillance and contextual metadata data integration such as [22], enabling exploration of time/season
optimized methods such as [42]. We expect to add 6000 more labeled video samples from our
testbeds within 3 months. We will also publish our testbed design ($90) and citizen science labeling
guide, making repeatable testbeds easy to set up anywhere for tailored mosquito surveillance with
limited entomologist support. MIL enables low power audtomated audio surveillance in rural areas
(our Raspberry Pi prototype is <$100 with 10x power savings over small desktops, further reduced by
5x by porting to ESP32 (a task in process). Consumers can be health organizations and governments
for rapid response. The speed of chukungunya spread in China shows how even a few days can
make a difference [29]. We already have interest from Sri Lanka’s parasitology experts for pilot
trials. Countries like Somalia and South Sudan, with heavy mosquito burden and limited entomology
resources can particularly benefit [39,40]. Furthermore, the approach may benefit other domains
critical to climate adaptation, but with limited data. Examples are wildfire, wildlife and undersea
species monitoring where bioacoustics have shown promise but background noise is complex and
location specific, and where integrating visual labels can provide an advantage.

6 Summary

We propose and demonstrate early evidence that mosquito presence can be detected from weakly-
labeled audio using only video-based annotations, enabling low-power, real-world mosquito
surveillance without expert labeling — a crucial adaptation strategy as mosquito habitats shift
under climate change. Code, datasets and testbed designs will be available on Github at
https://github.com/danikagupta/DeepMosquito as the project proceeds.
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