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Abstract

Direct building CO, emissions need to halve by 2030 to get on track for net zero
carbon building stock by 2050 [[1]]. Buildings consume 40% of global energy, with
HVAC systems responsible for up to half of that demand [2]]. Limiting global
warming to 1.5°C requires immediate deployment of scalable building efficiency
solutions. However, current approaches fail to scale [3]. We introduce HVAC-
GRACE (Graph Reinforcement Adaptive Control Engine), the first graph-based
RL framework for building control that enables zero-shot transfer by modeling
buildings as heterogeneous graphs and integrating spatial message passing directly
into temporal GRU gates. Our architecture supports zero-shot transfer by learning
topology-agnostic functions. Our framework enables scalable, transferable building
control that could accelerate global decarbonisation.

1 Introduction

Buildings are a major carbon source. HVAC (heating, ventilation, air-conditioning) drives an estimated
40-60% of those emissions, representing 12-15 % of global energy-related emissions [2]. Meeting
our global emissions targets is going to require faster deployment of emissions-saving measures in
the HVAC sector. Although advanced control strategies could substantially reduce HVAC energy
consumption, most buildings still rely on (inefficient) rule-based thermostats with static setpoints [4].

2  Why Current Methods are Inadequate

While model-based, data-driven, and learning-based methods show promise, they lack generalisation
and require extensive training, limiting deployment across buildings [} 3]. Model Predictive Control
requires costly building-specific models, while RL suffers from sample inefficiency, often needing
years of training [[6] during which buildings experience suboptimal performance [7]]. Pretraining
in simulation is impractical due to simulator development costs. Furthermore, policies struggle
to transfer between buildings due to varying characteristics [8l 9l], requiring retraining for each
deployment. Recent RL and transfer-learning studies [10} [11]] and morphology-aware methods in
robotics [12,[13}[14] show that structure helps, but buildings pose unique heterogeneity and coupling
challenges.
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Our work addresses a fundamental limitation: treating buildings as generic control problems using flat
policies applied to concatenated state vectors that ignore inherent structural organisation. Buildings
exhibit complex spatial and temporal relationships: zones have thermal adjacency determining
heat transfer, weather affects zones differently based on orientation, and HVAC equipment has
local effects propagating through structure. These relationships remain consistent across conditions,
suggesting that structure-aware policies could transfer more effectively than those learning implicit
representations from scratch.

Research in robotics demonstrates that structure-aware approaches improve RL performance. Ner-
veNet [12] showed that encoding morphological structure as graphs enables better sample efficiency
and generalisation by sharing parameters across components and modeling physical relationships.
This trend extends to other morphology-aware methods: SMP [[13] leverages graph representations
for similar benefits, while Metamorph [14] uses morphology-aware transformers to capture structural
dependencies. However, buildings present distinct challenges: heterogeneous node types with differ-
ent thermal properties, complex multi-timescale dynamics, and variable control topologies requiring
specialised architectural considerations.

Contributions: We introduce HVAC-GRACE (Graph Reinforcement Adaptive Control Engine),
the first transferable graph-based RL framework for scalable building decarbonisation. We contribute
(i) heterogeneous graph representations for building thermal physics, (ii) a unified spatial-temporal
Graph RNN with zero-shot transfer capabilities, and (iii) deployment criteria targeting maximum
climate impact, potentially preventing 165 megatonnes CO, annually toward 2030 climate targets.

3 Methodology

3.1 Heterogeneous Building Graph Construction

We represent buildings as heterogeneous directed graphs G = (V, £) with three node types:

Conditioned zones ()..): Indoor spaces with thermostat control that receive local observations and
generate control actions. Unconditioned zones (),): Indoor spaces without active temperature
control that provide thermal context. Outdoor environment (),): A single node aggregating weather
conditions and temporal features.

Edge relationships £ capture thermal connections: thermal adjacency edges connect zones sharing
surfaces, environmental influence edges connect outdoor nodes to zones with exterior surfaces, and
self-loop edges enable temporal state maintenance. More details on the problem formulation can be
found in Appendix

3.2 Temporal-Spatial Policy Architecture

Our policy processes heterogeneous building states through two integrated stages, where spatial and
temporal processing are unified within Graph RNN cells.

Stage 1: Input Processing and Heterogeneous Graph Construction Raw observations are pro-
cessed through type-specific input MLPs: z' = InputMLP(parsed_obs), where observations are
structured as node dictionaries with zone temperatures, weather data, and temporal features mapped
to their respective node types. This preprocessing is essential because building zones have different
thermal characteristics (conditioned vs. unconditioned vs. outdoor) and require type-specific feature
encoding to capture their distinct thermal behaviours and control capabilities.

Stage 2: Integrated Spatial-Temporal Processing via Graph RNN Traditional approaches handle
temporal and spatial dependencies separately: RNNs capture temporal patterns but ignore spatial
relationships [[15]], while GNNs capture spatial relationships but struggle with long-term temporal
dependencies [16]. However, in buildings these dependencies are tightly coupled: how a zone’s
temperature evolves depends critically on what neighbouring zones are doing.

Our Graph RNN unifies these relationships by replacing each GRU gate with a heterogeneous GNN.
Standard GRU gates (reset, update, and new gates) are the core mechanism in RNNs for controlling
how temporal memory is updated at each timestep. By implementing these gates as GNNs instead
of simple linear transformations, we enable spatial context from neighbouring nodes to influence
temporal memory updates.



Each heterogeneous GNN (HeteroGNN) performs type-specific message passing: (1) compute

messages using functions f,gsyg e(u)’type(“))(hu) that encode thermal physics relationships, (2) ag-
gregate messages m, = AGG({m,_, : u € N(v)}), and (3) update node representations via
ftype(v)

update (/v ). More details can be found in Appendix

Stage 3: Type-Specific Action Generation After processing through the Graph RNN, specialised
policy heads generate control actions for conditioned zones only. For each conditioned zone v € V,
we output Gaussian action distribution parameters:

conditioned (7, ¢
Mo,y log Oy = policy (h )

Actions are sampled as a,, ~ N (i, exp(log 0,)). Figure[I] shows the framework for the successful
implementation of HVAC-GRACE.
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Figure 1: The integration of heterogeneous message-passing GNNs within temporal GRU gates. This
spatial-temporal model provides a principled method for learning interactions across building zones.

4 Transferable Architecture and Validation Experiment

HVAC-GRACE enables zero-shot transfer by learning type-specific functions that operate over node
types, rather than fixed input positions. Our Graph RNN uses message functions fmgg (type(w), type(v)),

type(v)

update functions f, .. ">

and policy heads ;g;;g;mﬂed that generalise across graph structures.

We validated core functionality through zero-shot transfer experiments (Alabama — Montreal
climates), confirming successful heterogeneous graph processing. Testing on a Small Hotel model
(14% conditioned zones) revealed that sparse connectivity disrupts gradient flow needed for effective
spatial reasoning. Key Insight: Graph-based control excels in densely connected buildings, which
are the highest energy-consuming commercial buildings where climate impact is maximised.

S Deployment and Climate Impact

Deployment Strategy: Target high-connectivity buildings representing 60% of commercial HVAC
consumption. Develop automated topology assessment tools and scale through building management
partnerships. Climate Impact: Conservative deployment of just 20% of the suitable existing
commercial buildings could reduce ~165 000 000 metric tonnes of CO, annually — 30% savings
in HVAC, across 20% of 50% (commercial only) of the total building stock— which is equivalent
to taking 37 million cars off the road [17]. Economic Viability: The IEA estimates up to $2.9
trillion in potential savings from efficient HVAC technologies, creating strong economic incentives
for adoption [2]. Zero-shot transfer eliminates retraining costs, topology-agnostic functions enable
rapid deployment, and clear ROI metrics drive industry adoption.
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A Appendix

The appendix provides additional technical details supporting the HVAC-GRACE methodology,
including the complete problem formulation and training algorithm.

A.1 Problem Formulation

We formulate HVAC control as a Markov Decision Process (S,.A, P, r,v) where: S includes zone
temperatures, outdoor weather (temperature, humidity), time features (hour, day of year), and HVAC
energy consumption (electricity, gas); A represents heating and cooling temperature setpoints for
each controllable zone; P defines physics-based transitions through EnergyPlus [18] simulation; the
reward (s, a) balances energy consumption and comfort violations; and -y is the discount factor.

The agent learns a stochastic policy 7y(a¢|s;) that maximises expected discounted return J(0) =
]E’ﬂ'é? Zfio ’}/tT(St, at)-

A.2  Algorithm

Algorithm 1 presents the complete HVAC-GRACE training procedure, illustrating how heterogeneous
building graphs are constructed and processed through our spatial-temporal Graph RNN architecture.

Algorithm 1 HVAC-GRACE Training Algorithm
1: Input: Building epJSON file, training episodes N
2: G = (V, &) < ConstructGraph(epJSON)
3: Initialise policy 7y, critic Vs, Graph RNN states {h0},cy
4: for episode = 1 to NV do
5 Reset environment, initialise so, {h9},cy
6: fortimestept =0to7 — 1do
7.
8

Stage 1: Input Processing
: parsed_obs <— ParseObservation(s;)
9: x? < InputMLP(parsed_obs)

10: Stage 2: Graph RNN Processing

11: {hi},ey < GraphRNNCell(z?, &, {hi 1}, ep)
12: Stage 3: Action Generation

13: for each conditioned zone v € V. do

14: Hos IOg Oy < fpolicy(hfj)

15: Sample a,, ~ N (p,, exp(log o))

16: end for

17: Execute actions {a, }yey,, observe s;i1, 7t
18:  end for

19:  Update policy 7y and critic Vi, using PPO

20: end for

We now detail the mathematical operations within Stage 2:
Stage 2: Integrated Spatial-Temporal Processing via Graph RNN

Instead of zones updating memory in isolation, gates perform message passing across the building
graph:

rfaw = HetﬁrOGNNreset (xt ) 5) ( 1 )
Ztaw = HeteroGNN paae (2°, ) @
’I’Lfaw = HeterOGNNneW (xt ’ g) (3)



GNN outputs combine with previous hidden states through type-specific transformations:

rh =0 (rhy., + WEPWRI) )
2 = 0 (2l + WEPI LD 5)
Rt = tanh(nk, , + ) © WP R ©6)
hl=(1-zh)@hl +2 on™ )

This enables spatial context to influence temporal memory updates. When Zone B computes its
reset gate while adjacent Zone A is heating, the message function processes Zone A’s state, affecting
how Zone B updates its thermal memory, anticipating heat transfer and enabling coordinated control
decisions.
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