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Introduction.

Phytoplankton generate 50% of the
oxygen produced yearly, fix approx 50
Gigatons Carbon per year. Phytoplankton
size classes (PSCs) are picoplankton
(<2µm) , nanoplankton (2–20µm) and
microplankton (>20µm). PSCs are closely
related to photosynthetic efficiency,
sinking rate, and structure of the marine
food chain affecting the biological pump.
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XAI Results.
• Shortwave radiation (rsn), Sea

Surface Temperature (sst), Iron
(dfe), Ammonia (nh4) most
important (Fig.-5).

• Shortwave radiation more important
at higher latitudes and exerts
influence in a narrow range (30-40
W/m-2) (Fig-5, right-hand column of
Fig.- 3).

• SST has negative influence mostly
over tropics, mid-latitude gyres and
positive influence over higher
latitudes. (Fig.- 6)

• Iron limitation affects all PSCs till
about 2 NM range but sensitivity
varies across PSCs with micro-
plankton showing highest and pico-
plantkon the lowest. (left-hand
column of Fig. 3)
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(b) The next step would be to undertake “equation discovery”, or "data-driven discovery of
partial differential equations" or "learning hidden physics". This involves identifying the
underlying mathematical models (governing equations) from observed data, especially when
knowledge about the system is incomplete. Frameworks such as Deep Hidden Physics
Operator (DHPO) - Discovering Physics using DeepONet will be explored at this stage (Kag
et al., 2024). Conceptually, it aims to discover an unknown physics operator ℕ in a general
nonlinear PDE of the form

𝜕𝑃௜

𝜕𝑡
=  ℕ ∑𝑃௜, 𝐷𝑟, 𝑁𝑢𝑡   

A custom loss function can be used to train such an architecture. A possible formulation would
be to combine the data loss and the PDE loss term into a combined Sum of Squared Errors
Loss (SSE) as shown below (Raissi, 2018).

(c) Subsequently, the approach would be to use symbolic regression (e.g., Sparse 
Identification of Nonlinear Dynamics, SINDy), LAGRAMGE or other equation discovery 
systems  to extract interpretable forms like 

𝜕𝑃௜

𝜕𝑡 
= 𝜇 ∑𝑃௜, 𝐷𝑟, 𝑁𝑢𝑡 ∗ 𝑃௜ − 𝑚 ∗ P୧  
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Fig-1: Plankton bloom over Gulf of 
Oman - PACE, Mar -24
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Random Forest (RF). RF predicts PSCs for Kostadinov, MODIS+ Hirata and 
Copernicus GlobColor very well. Metrics used are Normalized Root Mean Squared 
Error and R2 Score. Normalized RMSE are in the range of 0.27-0.35, R2 scores 
are in range between 0.87-0.94.

Sources of Errors in ESM. Fig-1 shows distributions of log10 PHYC 
predicted using RFs. (a) Using observed predictors and the RF emulator trained on 
observations (Kostadinov et al., 2016). Correlation is very high and RMSE is very 
small. (b) Using modeled predictors and the RF emulator trained on the model. 
Correlation is again very high and RMSE very small. (c) Using modeled predictors 
and the RF trained on the observations. Decline in prediction shows impact of 
biases in predictors. (d) Using observed predictors and the RF trained on the 
model. Decline in prediction shows impact of the modeled apparent relationships 
differing from observed relationships.
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Explainable Machine Learning.
• Permutation Importance Analysis: Measures importance of a

feature as increase in prediction error after permuting the feature’s
values .

• Median Replacement Anomaly: Replaces value of one predictor
with its median observed value. Difference with original
prediction gives the information on spatio-temporal variation of
the PSC.

• Accumulated Local Effects (ALE): Similar to the Partial
Dependence Plots (PDP), aiming to describe how features
influence average model predictions. However, ALE addresses
the bias that arises in the PDP when the feature of interest is
correlated with other features.
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Fig-2: Permutation Importance- Log 
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dfe: iron; mld: mixed layer depth; nh4: ammonia; no3: nitrate; po4: phosphate; rsn: 
shortwave radiation; sal: salinity; sst: sea surface temperature;  sil: silicate;  w50: upwelling
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Fig-3: Accumulated Local Effects –Log Biomass 
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Fig-6 Median Replacement Anomaly- SST
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SciML.
(a) Since, observated time series datasets of nutrients of the ocean are
sparse and not available with adequate spatial and temporal resolution,
hence fully data-driven approaches may not feasible. Therefore, the
initial endeavor would be to use gray box modelling to find optimal
system parameters for the plankton dynamics.

Gray box models blend the advantages of both white and black box
approaches. They are capable of incorporating known physics of
plankton dynamics (white box) into machine learning techniques
(black box) thereby using data-driven methods to tune parameters of a
physically based model. The equations of Plankton dynamics encoded
in MARBL is shown in Fig.-7 (Long et al., 2021).

Initial approach would be to use Universal Differential Equation
(UDE) formulation with the MARBL equations to construct data-
driven gray box representations of the Plankton dynamics. The
endeavor is to learn parameters such as 𝜇௥௘௙ , 𝑚௜,  𝛼௜ using
observations. The idea is to replace unknown parts of the Plankton
dynamics equation from MARBL with neural networks and learn the
optimal parameters using data-driven approaches.

Fig-7

Plankton Dynamics

Fig-8

Universal Differential Equation Formulation


