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Al =3 | ” | Random Forest (RF). RF predicts PSCs for Kostadinov, MODIS+ Hirata and || Explainable Machine Learning.
: Copernicus GlobColor very well. Metrics used are Normalized Root Mean Squared || * Permutation Importance Analysis: Measures importance of a
Error and R2 Score. Normalized RMSE are in the range of 0.27-0.35, R2 scores feature as increase in prediction error after permuting the feature’s
are in range between 0.87-0.94. values .
Median Replacement Anomaly: Replaces value of one predictor
with its median observed value. Difference with original
prediction gives the information on spatio-temporal variation of
the PSC.
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Introduction.

Phytoplankton generate 50% of the
oxygen produced yearly, fix approx 50
Gigatons Carbon per year. Phytoplankton
||size classes (PSCs) are picoplankton
(<2pm) , nanoplankton (2-20pm) and
microplankton (>20um). PSCs are closely
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Sources of Errors in ESM. Fig-1 shows distributions of log10 PHYC
predicted using RFs. (a) Using observed predictors and the RF emulator trained on
observations (Kostadinov et al., 2016). Correlation is very high and RMSE is very
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Ml related to photosynthetic efficiency, 23 b 25 |'small. (b) Using modeled predictors and the RF emulator trained on the model. * Accumulated Local Effects (ALE): Similar to the Partial
f || sinking rate, and structure of the marine E % Correlation is again very high and RMSE very small. (c) Using modeled predictors Dependence Plots (PDP), aiming to describe how features
| food chain affecting the biological pump. & s E ss [ and the RF trained on the observations. Decline in prediction shows impact of influence average model predictions. However, ALE addresses

the bias that arises in the PDP when the feature of interest is
correlated with other features.

+ | biases in predictors. (d) Using observed predictors and the RF trained on the
model. Decline in prediction shows impact of the modeled apparent relationships
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differing from observed relationships.

Fig-2: Permutation Importance- Log
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dfe: iron; mld: mixed layer depth; nh4: ammonia; no3: nitrate; po4: phosphate; rsn:
shortwave radiation; sal: salinity; sst: sea surface temperature; sil: silicate; w30: upwelling
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Fig-5: Median Replacement Anomaly- Shortwave Radiation D
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« Shortwave radiation (rsn), Sea
Surface Temperature (sst), Iron
(dfe), ~Ammonia  (nh4)  most

important (Fig.-5).

Shortwave radiation more important
at higher latitudes and exerts
influence in a narrow range (30-40
W/m?) (Fig-5, right-hand column of|
Fig.- 3).

* SST has negative influence mostly
over tropics, mid-latitude gyres and
positive  influence over higher
latitudes. (Fig.- 6)

SST(C) Shortwave radiation
ey

Iron limitation affects all PSCs till
about 2 NM range but sensitivity
varies across PSCs with micro-
plankton showing highest and pico-

plantkon the lowest.  (left-hand
column of Fig. 3)

Fig-6 Median Replacement Anomaly- SST
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Universal Differential Equation Formulation
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(a) Since, observated time series datasets of nutrients of the ocean are
sparse and not available with adequate spatial and temporal resolution,
hence fully data-driven approaches may not feasible. Therefore, the
initial endeavor would be to use gray box modelling to find optimal
system parameters for the plankton dynamics.

Gray box models blend the advantages of both white and black box
approaches. They are capable of incorporating known physics of
plankton dynamics (white box) into machine learning techniques
(black box) thereby using data-driven methods to tune parameters of a
physically based model. The equations of Plankton dynamics encoded
in MARBL is shown in Fig.-7 (Long et al., 2021).

Initial approach would be to use Universal Differential Equation
(UDE) formulation with the MARBL equations to construct data-
driven gray box representations of the Plankton dynamics. The
endeavor is to learn parameters such as per, m; @; using
observations. The idea is to replace unknown parts of the Plankton
dynamics equation from MARBL with neural networks and learn the
optimal parameters using data-driven approaches.

(b) The next step would be to undertake “equation discovery”, or "data-driven discovery of
partial differential equations” or "learning hidden physics". This involves identifying the
underlying mathematical models (governing equations) from observed data, especially when

knowledge about the sys

tem is incomplete. Frameworks such as Deep Hidden Physics

Operator (DHPO) - Discovering Physics using DeepONet will be explored at this stage (Kag
et al., 2024). Conceptually, it aims to discover an unknown physics operator N in a general

nonlinear PDE of the form

aP;

5t N(YP;, Dr, Nut)

A custom loss function can be used to train such an architecture. A possible formulation would
be to combine the data loss and the PDE loss term into a combined Sum of Squared Errors

Loss (SSE) as shown below (Raissi, 2018).

SSE = S|P~ P+ % ~N(32 P, Dr, Nut)|?)
(c) Subsequently, the approach would be to use symbolic regression (e.g., Sparse
Identification of Nonlinear Dynamics, SINDy), LAGRAMGE or other equation discovery

systems to extract interpretable forms like
P;

at

= u(XP;, Dr,Nut) * P, —m =P,
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