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Abstract

The ocean carbon cycle and global climate are intricately connected as organic
matter sinking into the deep ocean (the biological carbon pump) stores carbon in
the deep ocean. Without this storage, atmospheric carbon dioxide would be 20-30%
higher than it is today. As the biological pump is affected by marine plankton
abundance, it is vital to understand what controls plankton abundance. Plankton are
grouped into size classes (PSCs) which impact photosynthetic efficiency, sinking
rate, and marine food chain. Therefore, discerning the causes of spatio-temporal
variability of PSCs is a scientific priority for understanding the ocean’s role in and
response to climate change. Earth System Models (ESMs) are used to predict PSCs
from environmental drivers by modelling biogeochemical and physical processes.
ESMs’ representations of processes are limited by simplifying assumptions and
exhibit significant biases. It is difficult to know if the relationships established by
the ESMs are representative of the natural world. This study intends to decipher the
relationships between the abundance of PSCs and environmental predictors using
machine learning (ML), interpretable ML (XAI) and satellite products. The aim is
to determine how the relationships between environmental drivers and PSCs found
in nature differ from those encoded in ESMs. Subsequently, we aim to use scientific
machine learning to alter the underlying equations used by ESMs for predictions so
that they obey the relationships found in nature. This will help improve predictions
of PSCs by ESMs and increase our understanding of the marine carbon cycle’s
response to climate change.

1 Introduction

As the base of the marine food web, phytoplankton play a fundamental role in setting the productivity
of the entire marine ecosystem. Oxygenic photosynthesis by marine phytoplankton is responsible
for fixing approximately 50 Gt C/yr [Field et al.,|1998| |Carr et al.,[2006] and powers the biological
pump, which is an important part of the carbon cycle [Siegel et al.| [2023]]. Since size is a master
trait [Maranon, 2015, phytoplankton are often classified according to their sizes. Commonly, three
phytoplankton size classes (PSCs) are defined [Sieburth et al., [1978]] — picoplankton (< 2 pum in
diameter), nanoplankton (2 to 20xm) and microplankton (> 20 pm). The global spatiotemporal
distribution of the PSCs both influences [Falkowski and Oliver, 2007]] and can be influenced by
[Marinov et al.| 2013 |Cabré et al., 2015]] climate and shorter-term processes such as seasonality
[Alvain et al., 2008|]. PSCs are closely related to plankton photosynthetic efficiency, sinking rate,
and the structure of the marine food chain [Berelson, 2001} |Siegel et al., |2016]. For instance,
phytoplankton communities in productive areas dominated by large diatoms are considered to have
high particulate organic carbon (POC) export due to the fast sinking rate of associated particles
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[Mouw et al.,|2016]]. By contrast, picoplankton species dominate in the oligotrophic regions of
the sea, where POC export is primarily through indirect grazing [Richardson and Jackson, 2007]
and is much weaker. Understanding the long-term variability of PSCs is essential to predict the
change of the biological carbon pump and therefore climate change [Beaugrand et al., 2003} [Doneyl,
2013 Sathyendranath et al., [2014, [Kernan et al., 2015} [Fu et al.| 2016]. Hence, this knowledge is a
crucial component of Earth system and climate modelling. [Holder and Gnanadesikan| [2021]], defined
"apparent relationships" as those found in nature between environmental drivers and phytoplankton
growth arising as a result of co-limitations [Saito and Goepfert, 2008 and the interactions between
nutrients [Price and Morel, |1991,|[Maldonado and Price, [1999,|Wang and Dei, 2001} |[Hassler et al.,
2012, |[Schoffman et al.,2016]]. Because these interactions between environmental drivers can result in
highly non-linear relationships between a driver and PSCs, it is difficult to interpret such relationships
and also fit a functional form that can model such a relationship. Machine Learning (ML) methods
are known to be capable of capturing non-linear complex relationships. Therefore, the study aims
at using Interpretable ML (XAI) methods to capture the apparent relationships to arrive at a better
understanding of the ways that the environmental drivers influence PSCs.

2 Approach

We used the monthly averaged concentrations of PSCs obtained from multiple satellite derived
products of PSCs from NASA MODIS (Moderate Resolution Imaging Spectroradiometer) [Hirata
et all2011]], SeaWiFS (Sea-viewing Wide Field-of-view Sensor) [Kostadinov et al.| 2016b], and a
multisatellite merged dataset developed by the Copernicus data server [Xi et al.,|2021]] as ground truth.
A detailed description of the datasets is given in section A.1 of Appendix to this proposal. Following
a published methodology, [Holder and Gnanadesikan, [2023]] the input environmental drivers consisted
of observational monthly mean climatologies of temperature, salinity, mixed layer depth, silicate,
phosphate, and nitrate obtained from the World Ocean Atlas-2018 (WOA-18); shortwave radiation
from the International Satellite Cloud Climatology Project (ISCCP); vertical velocity from Estimating
the Circulation and Climate of the Ocean (ECCO) reanalysis data. Ensemble averages of CMIP6
ESMs were taken for dissolved iron and ammonia, since no globally interpolated observational
datasets exist for these sparsely sampled variables. The idea was to train a simplistic ML algorithm
using the input environmental drivers and satellite data of PSCs that does well in capturing the large
scale spatio-temporal variability of PSCs. We found that Random Forest Regressor (RFR) was able
map the large scale apparent relationships between environmental drivers and the PSCs very well
[Holder and Gnanadesikan| [2021} 2023]]. Table-1 outlines the performance of the RFR and it is
evident that the RFR performed admirably. Normalized RMSE (Norm RMSE) scores were in the
range of 0.24-0.35 whereas the R? score were between 0.87-0.94.

Table 1: Performance Metrics of Random Forest Regressor: Norm RMSE - Normalized Root
Mean Squared Error (RMSE divided by Standard Deviation of Test dataset), R2 Score (1-error
variance/sample variance).

Norm RMSE R2 Score
Size Classes | SeaWiFS | Copernicus | MODIS | SeaWiFS | Copernicus | MODIS
Phytoplankton 0.35 - - 0.87 - -
Chlorophyll-a - 0.28 0.29 - 0.92 0.93
Microplankton 0.29 0.31 0.27 0.91 0.90 0.93
Nanoplankton 0.28 0.32 0.24 0.92 0.90 0.94
Picoplankton 0.29 0.32 0.27 0.91 0.90 0.92

2.1 Interpretable ML

The next step is to use numerous Interpretable ML (XAI) techniques to decipher the apparent
relationships being mapped by the RFR. We envisage using both global and local XAI techniques
like SHAP, Permutation Importance, Accumulated Local Effects, Sensitivity analysis [Molnar, [2020]]
to gain a robust understanding of apparent relationships. The use of multiple methods helps to find
consistent results and arrive at robust conclusions. Our focus would be on identifying results that are
similar across different methods. Such results are most likely to be true and accurate, and therefore
can used for drawing definitive conclusions. The resulting accumulated local effects (ALE) for total



phytoplankton carbon/ chlorophyll-a [Apley and Zhu| [2020] for three drivers (shortwave radiation,
iron, sea surface temperature) are shown in Fig{I} The full results of permutation importance analysis
and the ALE analysis along with a detailed description of the methods in given in sections A.2 & A.3
of Appendix for reference.
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Figure 1: Accumulated Local Effects plots for log transformed phytoplankton carbon (SeaWiFS
product using kostadinov algorithm) chlorophyll-a (MODIS and Copernicus) for Iron, Sea Surface
Temperature (SST) and Shortwave Radiation.

2.2 Scientific Machine Learning
An example of an equation to model phytoplankton growth by ESMs [Long et al.l2021] is given
below:
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where, the first term on the right-hand side represents growth, the second grazing, the third mortality
and the fourth aggregation. P, is the individual PSC in log scales; p,, is the growth rate of a PSC; Z is
the zooplankton biomass in log scales; g7*** is max growth rate of zooplankton; K, is half saturation
constant; m,, is linear mortality for a PSC; «,, is aggregation parameter for a PSC. The values of
these parameters are often estimated from theoretical considerations of ocean biogeochemistry and
have inherent uncertainties and assumptions. Therefore, we intend to use Physics Informed ML and
Physics Informed Deep Operator Networks to undertake “system parameter estimation” to learn
these parameters using data. The parameter values discovered through this process will be used in
the above equation and the deviation of the predictions from observations using the new parameter
values will be examined to assess improvement in performance. The next step would be to undertake
“equation discovery”, or "data-driven discovery of partial differential equations" or "learning hidden
physics". This involves identifying the underlying mathematical models (governing equations) from
observed data, especially when knowledge about the system is incomplete. Traditional approaches
often struggle with this due to limitations like requiring prior knowledge of system nonlinearities or
sensitivity to noise. Frameworks such as DeepONet will be explored at this stage [Kag et al., [2024].

3 Pathway to Climate Impact

The future response of marine phytoplankton to continued anthropogenic forcing is poorly constrained,
with a recent study showing that pattern of relative change in biomass across models has a median
correlation of 0.35 [[Gnanadesikan et al.| [2024]]. Improving ESMs predictions of plankton can help
us to assess the potential impacts of climate change on marine ecosystems, fisheries, and formulate
informed policies related to carbon sequestration, ocean management, and climate change adaptation.
A deeper understanding of the relationships between the environmental drivers and plankton growth
will help us predict plankton response to climate change phenomena such as as rising temperatures,
change in ocean currents and stability of the upper ocean, reduced supply of nutrients from the deep
ocean etc. This in turn can help us answer questions like "Will the biological pump slow down under
the effects of climate change, leaving more C'O5 in the atmosphere, where it will contribute to further
climate change?"
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A APPENDIX : PRELIMINARY RESULTS

A.1 Satellite Data Products

We chose three target observational data sets which derive information about size-structured biomass
from remote sensing. The choice of multiple datasets for the analysis is motivated by the fact
that different ocean color algorithms have their own inherent biases and uncertainties. Deriving
accurate ocean color data products from measurements several hundreds of kilometers above the
Earth requires a thorough understanding of the entire system of ocean color measurements from the
satellite to the sea surface. This includes the development and implementation of algorithms for global
routine processing such as on-orbit temporal stability corrections, vicarious calibration, atmospheric
correction (including whitecap and Sun glint corrections), and bio-optical algorithm development.
Since this study aims to identify the most consistent large scale relationships between environmental
drivers and PSCs, we focus on the most consistent relationships obtained from analyzing multiple
satellite derived datasets. These relationships are more likely to be accurate and also less sensitive
to individual algorithmic biases [Hu et al., 2019]. The first dataset was from NASA SeaWiFS
sensor obtained using the kostadinov algorithm [Kostadinov et al.,|2016a]] and contains estimates for
phytoplankton size classes as carbon. The second target data set is based on combining MODIS-Aqua
chlorophyll-a (Chl-a) with an algorithm that partitions chlorophyll amongst size classes. The fitting
formulae and associated coefficients to quantify the relationship between Chl-a in mg/m® and %
Chl-a for each PSC was taken from [Hirata et al.|[2011]]. Equations to estimate fractions (0.0 - 1.0) of
PSCs (micro-, nano- and pico-plankton) are given below.

Microplankton = [0.9117 + exp(—2.7330 * x + 0.4003)] ~* (la)
Picoplankton = —[0.1529 + exp(1.0306 * x — 1.5576)] "' — 1.8597 * = + 2.9954 (1b)
Nanoplankton = (1 — Microplankton — Picoplankton) (1¢)

x = log10(Chl — a) (1d)

The third target dataset is obtained from the Copernicus Marine Environment Monitoring Service
(CMEMS) [Le Traon et al.l 2015]. As described in Copernicus Marine Service Products Qual-
ity information Document (https://data.marine.copernicus.eu/product/0CEANCOLOUR_
GLO_BGC_L4_NRT_009_102/description), PSCs are retrieved with the Xi et al.|[2021] algorithm
which relates PSCs to empirical orthogonal functions of the water-leaving radiance.

A.2 Permutation Importance

Permutation feature importance measures the increase in the prediction error of the model after
permuting the feature’s values, which breaks the relationship between the feature and the true
outcome. The increase in the importance score is computed by calculating the decrease in the quality
of the new predictions relative to the original predictions measured by an increase in the Normalized
RMSE (normalized root mean squared error). Once the computed importance scores for all of the
features have been obtained, the features can be ranked in terms of predictive usefulness. The results
of the permutation importance analysis are shown in Fig{2] The bar charts show the relative increase
in errors when the corresponding input driver is permuted keeping the other input drivers at their
original values and this altered dataset is given to the trained RFR for prediction. The decrease
in model performance measured by an increase in the error is denoted by the bars associated with
the respective input driver. The higher the error for an input driver, the higher is the importance
of that input driver. The results of permutation importance analysis on phytoplankton size classes
from a recent study is shown in Fig@] [Dutta and Gnanadesikan, [2025]]. Shortwave radiation (rsn),
SST, iron (dfe) and ammonia (nh4) seems to be the most important drivers across PSCs, though the
order of their importance varies across different satellite products. Also, looking at the magnitude
of importances, iron seems to play a more important role in case of Kostadinov & MODIS PSCs as
compared to that of Copernicus. All satellite products give a high importance to SST, though for the
Copernicus microplankton and nanoplankton SST emerges as the most important driver. Similarly,
though iron (dfe) has high importance in all satellite products but the MODIS Chl-a, microplankton,
nanoplankton shows the highest importance to iron. Also, looking at the magnitudes of importances
given by the Normalized RMSE (Norm RMSE) iron seems to have much less importance for the
Copernicus PSCs as compared to the PSCs from Kostadinov or MODIS. Ammonia is seen to be the
fourth most important driver for Kostadinov and MODIS datasets. On the other hand, upwelling
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(w50) and silicate (sil) seems to be the least important input drivers across PSCs from all satellite
products.

A.3 Accumulated Local Effects (ALE)

An important goal of our study is to isolate the apparent relationships between input and target
variables. Partial dependence is a standard ML method to isolate how an input feature may influence
the predicted outcome. However, if features are correlated, the partial dependence plot cannot be
trusted[Molnar} 2020]. Accumulated local effects (ALE) plots mitigate this shortcoming. ALE plots
do so by isolating the change in prediction caused by a change in a single input. It does this by
defining localized ranges of the input. For each local range, we take all data samples where the
input’s value falls within the range. While holding all other input values of the samples constant,
we then calculate the differences in predictions when RFR is fed the minimum and maximum of
each range. A sufficiently small window allows us to create a reasonably accurate estimate of the
change in the target variable over that range (the "local effect"). Then by accumulating all of the
local effects, we are able to have a full picture of our input’s effect on the output. Calculating the
difference across our window as opposed to the average (which some other techniques do) allows
ALE plots to characterize the effective impact of a given input on the expected prediction. [Molnar
2020, [Apley and Zhu, [2020]. Fig 3| shows the ALE plots for PSCs obtained from a recent study
[Dutta and Gnanadesikan, 2025]]. The plots are centered at zero so each point of the ALE curve
represents the difference from the mean prediction. For instance, an ALE value of approximately
0.4 for Copernicus picoplankton for SST value of 30°C' would mean that prediction of picoplankton
when SST has a value of 30°C' is 0.4 log units higher than the average prediction. The plots show
qualitatively very similar relationships across PSCs for the three satellite products. All of the twelve
satellite products show a positive relationship with respect to shortwave radiation and iron whereas
11 of the 12 show a negative relation with SST. Picoplankton are seen to be the least sensitive to
environmental drivers as compared to the micro and nanoplankton. PSCs obtained from Copernicus
exhibit the weakest amplitude of sensitivity whereas Kostadinov and MODIS derived PSCs show a
similar, and higher amplitude of sensitivity to iron.
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Figure 2: Permutation Importance : Graphs show the importance of each driver. A taller bar for
an input driver implies a larger error when the input is permuted randomly thereby implying that it
has higher importance in the prediction by the RFR. Input drivers: Iron (dfe), Mixed Layer Depth
(mld), Ammonia (nh4), Nitrate (no3), Phosphate (po4), Shortwave Radiation (rsn), Salinity (sal), Sea
Surface Temperature (sst), Silicate (sil), Upwelling at 50m depth (w50).
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Figure 3: ALE Plots: Accumulated Local Effects plots for PSCs for Iron (left-hand column), Sea
Surface Temperature (SST, middle column) and Shortwave Radiation (right-hand column). Log
transformation values for iron are plotted for better comprehension. The central line denotes the

average of the local effects for all bins and the curves indicate the deviation from the average. Rows
show different size classes as in previous figures.
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