
CC-GRMAS: A Multi-Agent Graph Neural System for Spatiotemporal Landslide Risk Assessment in High Mountain Asia

Mihir Panchal, Ying Jung Chen, Surya Parkash

Introduction

Landslides, driven by climate change, pose significant risks to life and economic stability, particularly in High Mountain Asia, where complex topography, active seismicity, and shifting precipitation patterns amplify vulnerability. More than 1.5 billion people depend on the glaciers and rivers of the HMA, making the impacts of these hazards particularly severe

Current Challenges:

- 1. Weak spatial modeling and data integration
- 2. Fragmented disaster response mechanisms
- 3. Limited real-time monitoring capabilities
- 4. Poor coordination among stakeholders

Dataset

Table 1: Graph Database Node Type Distribution

Node Type	Count	Percentage	Description	
Event	1,558	61.1%	Core landslide event records	
Source	440	17.2%	Information sources and references	
GazetteerPoint	331	13.0%	Geographic reference points	
LandslideProfile	223	8.7%	Landslide characterization profiles	
Total 2,552		100.0%	Complete node inventory	

Table 2: Landslide Event Record Attributes

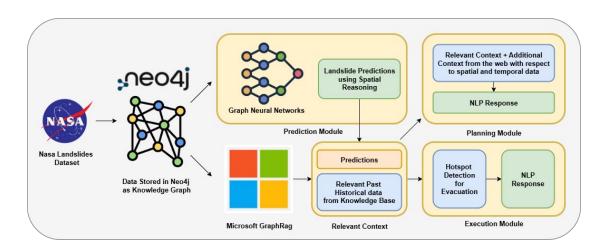
Category	Attribute	Description			
Temporal event_date submitted_date		Date of landslide occurrence Record submission date			
Spatial	latitude longitude location_description location_accuracy	Geographic coordinate Geographic coordinate Textual location description Coordinate precision assessmen			
Impact	fatality_count injury_count	Confirmed fatalities Reported injuries			
Descriptive event_title event_description		Brief event identifier Detailed event narrative			

NASA Global Landslide Catalog (GLC)

Coverage: 2007-2020 | Events: 1,558 (HMA region)

Sources: News: News Articles, Scientific literature, Government reports

Provider: NASA Goddard/GPM mission


Methodology

Prediction Agent

Graph Neural Networks with attention mechanisms

Models **spatial dependencies** between landslide events

42.7K parameters - **99.9**% **reduction** vs traditional CNNs

Dynamic **proximity graphs** for enhanced risk modelling

Planning Agent

Large Language Models with **GraphRAG** integration

Context aware risk analysis and
climate impact assessment

Vector embeddings for **semantic search** across knowledge graph

Comprehensive assessment of **temporal** and geographic patterns

Execution Agent

Automated hotspot detection via grid based spatial sampling

Coordinates predictions with contextual analysis

Generates **spatially** aware response recommendations

Real time intervention for vulnerable communities

Results

Table 3: Performance comparison of baseline models and U-Net for landslide forecasting.

Approach	Method	F1-Score	Precision	Recall	Params (M)
Nepal Study [26]	RF	0.56	0.47	0.70	< 0.1
Nepal Study [26]	XGB	0.54	0.45	0.67	< 0.1
Nepal Study [26]	GB	0.56	0.49	0.65	< 0.1
Nepal Study [26]	U-Net	0.79	0.91	0.69	31.0
CC-GRMAS (Ours)	Spatial GNN	0.7981	0.8062	0.7928	< 0.1

Table 4: Semantic Coherence Metric Components for GraphRAG Evaluation

Component	Score	Description			
Overall Semantic Coherence	0.751	Composite metric measuring retrieval quality and answer relevance averaged across all HMA coun- tries			
Average Similarity	0.814	Mean cosine similarity between retrieved node and ground truth across all retrieved results			
Weighted Similarity	0.821	Position weighted similarity emphasizing higher ranked retrieval results			
Maximum Similarity	0.840	Best single node match indicating peak retrieval accuracy			
Minimum Similarity	0.797	Weakest node match showing lower bound of re trieval quality			
Diversity Score	0.143	Measure of information variety across retrieved nodes balancing relevance with coverage			

Key Advantages:

- 1. Faster training and inference
- 2. Lower memory requirements
- Scalable to larger geographic regions
- Interpretable spatial relationships
- Suitable for resource constrained deployment in HMA

Summary and Outlook

Scan Here for the code

Scan Here to read the paper

Scan Here to connect or collaborate

CC-GRMAS provides an efficient, interpretable, and scalable multi-agent framework for climate resilient disaster preparedness in vulnerable mountain regions.