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Abstract

Landslides are a growing climate induced hazard with severe environmental and
human consequences, particularly in high mountain Asia. Despite increasing
access to satellite and temporal datasets, timely detection and disaster response
remain underdeveloped and fragmented. This work introduces CC-GRMAS, a
framework leveraging a series of satellite observations and environmental signals
to enhance the accuracy of landslide forecasting. The system is structured around
three interlinked agents Prediction, Planning, and Execution, which collaboratively
enable real time situational awareness, response planning, and intervention. By
incorporating local environmental factors and operationalizing multi agent coordi-
nation, this approach offers a scalable and proactive solution for climate resilient
disaster preparedness across vulnerable mountainous terrains.

1 Introduction

Landslides, driven by climate change, pose significant risks to life and economic stability, particularly
in High Mountain Asia (HMA), where complex topography, active seismicity, and shifting precipita-
tion patterns amplify vulnerability [1, 2]. More than 1.5 billion people depend on the glaciers and
rivers of the HMA, making the impacts of these hazards particularly severe [3–5]. Key climate change
drivers, such as extreme rainfall, glacial retreat, freeze thaw cycles, and permafrost degradation,
exacerbate the frequency and intensity of landslides [6, 7]. Furthermore, increasing population
pressure, expanding infrastructure, and systemic challenges such as limited early warning systems
and fragmented disaster response mechanisms increase the region’s exposure to these catastrophic
events [8–10]. Current approaches to landslide risk management in HMA reveal critical technical and
operational gaps [11–13]. Technically, spatial modeling remains weak, with poor integration of multi
source data, limited incorporation of contextual knowledge, and reliance on reactive systems [14–16].
Operationally, challenges include inadequate coordination among stakeholders, low scalability of
existing frameworks, insufficient real time monitoring, and weak integration of local and regional
actors. These gaps hinder effective prediction, planning, and response, leaving HMA communities
vulnerable to increasing climate induced landslide risks and underscoring the need for innovative,
scalable solutions [17, 18].
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To address these challenges, we propose the Climate Change Graph Risk Management and Analysis
System (CC-GRMAS), a novel framework leveraging advanced AI techniques for proactive landslide
risk management. CC-GRMAS employs a multi agent architecture integrating Graph Neural Networks
(GNNs) with attention mechanisms for enhanced spatial modeling, Retrieval Augmented Generation
(RAG) enhanced graph databases for knowledge aware decision making, and automated systems
for proactive hotspot detection and real time intervention. The framework integrates data sets such
as NASA’s Global Landslide Catalog (1,558 HMA events) and supports Sustainable Development
Goals (SDGs) 13, 11, and 15 through its modular scalable design. By combining data preprocessing,
GNN based prediction, GraphRAG pipelines, and multi agent coordination, CC-GRMAS addresses
systemic gaps, offering a robust solution for mitigating landslide risks in HMA.

2 Dataset and Preprocessing

The dataset used in this study was derived from the NASA Global Landslide Catalog (GLC), curated
by the NASA Goddard Space Flight Center in collaboration with the Global Precipitation Measure-
ment (GPM) mission. This catalog compiles landslide event records from a wide range of sources,
including news articles, scientific literature, government reports, and citizen science contributions,
focusing on landslides from 2007 to 2020 [19]. Data were obtained through the NASA Landslide
Portal (1, 2)

(a) Landslides in High Mountain Asia (b) 1558 ground truth data points

To ensure data consistency and usability for subsequent modeling, a series of preprocessing steps
were performed. The dataset consisted of 1558 landslides events across in the HMA region. Event
metadata like landslide profile, source of information and gazeteer point of the landslide were aligned
with a structured knowledge graph schema to support the multiagent system. The processed dataset
was then represented in a graph database, enabling seamless integration of spatial, temporal, and
descriptive attributes for downstream analytical tasks.

Table 1: Graph Database Node Type Distribution
Node Type Count Percentage Description

Event 1,558 61.1% Core landslide event records
Source 440 17.2% Information sources and references
GazetteerPoint 331 13.0% Geographic reference points
LandslideProfile 223 8.7% Landslide characterization profiles

Total 2,552 100.0% Complete node inventory

The graph database organizes records into several distinct node types. Table 1 summarizes the distri-
bution of nodes in the dataset. Further details of the dataset attributes are provided in Appendix A.1.

1https://gpm.nasa.gov/landslides/
2https://landslides.nasa.gov/viewer
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Figure 2: Architecture Diagram

3 Proposed Method

This study develops CC-GRMAS, a multi-agent system using graph neural networks and retrieval-
augmented generation for improved landslide forecasting and disaster response in HMA. CC-GRMAS
models landslide risk through graph-based spatial relationships, enhancing prediction accuracy and
enabling coordinated disaster response.

The system employs an agentic architecture where each agent specializes in complementary aspects
of landslide risk management. The Prediction Agent utilizes Graph Neural Networks with attention
mechanisms to model spatial relationships between landslide events across geographic regions. The
Planning Agent leverages Large Language Models integrated with Retrieval Augmented Generation to
provide context aware risk analysis and climate impact assessments. The Execution Agent coordinates
operational responses through automated hotspot detection and response generation workflows.

We applied feature engineering, including spatial coordinate normalization, temporal encoding, and
impact severity quantification, to improve training diversity and regional variation modeling. We
then constructed dynamic proximity graphs using distance-based connectivity patterns to enhance
spatial relationship modeling for landslide risk assessment. CC-GRMAS will be evaluated against
NASA’s Global Landslide Catalog to validate performance across diverse geographic and temporal
scenarios.[20, 21].

The workflow of the CC-GRMAS multi agent system is shown in Figure 2. This approach demon-
strates that while individual machine learning models offer valuable capabilities [22], multi agent
coordination with graph based knowledge integration is essential for optimizing performance in
complex applications, such as climate induced landslide risk management [23–25]. Details of the
agentic architectures and implementation are provided in the Appendix A.2. The implementation
code is available on GitHub3.

4 Conclusion & Pathways to Climate Impact

This work introduces CC-GRMAS, a multi-agent system for landslide forecasting and disaster
response in HMA. It combines graph neural networks for spatial risk prediction, large language models
using retrieval-augmented generation for contextual analysis, and automated response coordination,
leveraging localized environmental data and dynamic graph representations to enhance the accuracy
and timeliness of landslide risk assessments. CC-GRMAS provides real-time situational awareness,
targeted planning, and rapid interventions for vulnerable communities, with a modular design
adaptable to various geographies and hazards. It supports SDG 13 (Climate Action) by mitigating
disaster impacts, SDG 11 (Sustainable Cities and Communities) by enhancing resilience, and SDG
15 (Life on Land) by protecting ecosystems. The framework equips policymakers and stakeholders
with actionable insights to reduce risk and safeguard livelihoods in a changing climate.

3https://github.com/MihirRajeshPanchal/CC-GRMAS
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A Appendix

A.1 Detailed Dataset Description

The NASA GLC dataset undergoes continuous updates as new events are reported and verified,
adhering to a standardized schema to ensure global comparability and high spatial precision of the
data. Each landslide record encompasses a set of attributes across the temporal, spatial, impact related,
and descriptive dimensions. Temporal attributes include the date of the event and the date the record
was submitted, whereas spatial attributes document the latitude and longitude in decimal degrees,
accompanied by a textual location description and an assessment of coordinate accuracy. Impact
attributes capture the number of confirmed fatalities and the number of reported injuries. Descriptive
fields provide a brief event title and a more detailed narrative of the event. The dataset’s completeness
and consistency render it well suited for integration into graph based representations, in which each
event is linked to sources, geographic references, and landslide profiles.

Table 2: Landslide Event Record Attributes
Category Attribute Description

Temporal event_date Date of landslide occurrence
submitted_date Record submission date

Spatial

latitude Geographic coordinate
longitude Geographic coordinate
location_description Textual location description
location_accuracy Coordinate precision assessment

Impact fatality_count Confirmed fatalities
injury_count Reported injuries

Descriptive event_title Brief event identifier
event_description Detailed event narrative

This structure facilitates efficient querying and enables advanced analytical techniques, such as graph
neural networks. Table 2 presents the complete schema for the landslide event records, including the
data types and descriptions of each attribute.

A.2 Multi Agent System Workflow

The CC-GRMAS framework addresses the fundamental challenge of landslide risk management
through a coordinated multi agent architecture that integrates spatial prediction, contextual analysis,
and operational response capabilities. Traditional approaches to landslide forecasting often operate
in isolation, limiting their effectiveness in complex, dynamic environments where multiple factors
interact across different temporal and spatial scales. The system architecture implements three
specialized agents that collectively transform raw landslide data into actionable intelligence for
disaster preparedness and response. Each agent addresses distinct but complementary aspects of
the landslide risk management pipeline: spatial pattern recognition and prediction, contextual risk
analysis and planning, and operational response coordination.

A.2.1 Graph Neural Network Implementation Details

The Prediction Agent is implemented using a sophisticated Graph Neural Network architecture that
processes landslide event data through multiple stages of feature engineering, graph construction, and
neural network layers. Figure 3 illustrates the complete data flow and architectural components of the
GNN based prediction system.

The Prediction Agent models complex spatial relationships between landslide events across the HMA
region. The agent’s architecture is motivated by the observation that landslide occurrences exhibit
strong spatial dependencies due to shared geological, topographical, and climatic conditions within
geographic neighborhoods. The GNN implementation employs a multilayer architecture combining
graph convolutional networks (GCN) with graph attention networks (GAT) to capture both local
neighborhood patterns and long range spatial dependencies. The feature extraction process transforms
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Figure 3: Detailed Graph Neural Network Architecture for the Prediction Agent showing the com-
plete data processing pipeline from raw landslide data through feature engineering, spatial graph
construction, GCN and GAT layers, to final risk classification output.

raw landslide event data into structured node representations through spatial coordinate normalization,
temporal encoding of event dates, impact severity quantification, and landslide profile categorization.
These features are designed to capture the multi dimensional nature of landslide risk factors.

The spatial graph construction process creates dynamic proximity graphs using distance based
connectivity patterns, where edges connect landslide events within a configurable distance threshold.
This approach enables the model to learn from spatial clustering patterns while adapting to different
scales of analysis. The attention mechanism within the GAT layers allows the model to automatically
weight the importance of different spatial relationships, providing interpretable insights into which
geographic connections most strongly influence the propagation of landslide risk. The training
methodology incorporates synthetic label generation based on multifactor risk scoring that combines
casualty counts, landslide magnitude classifications, and temporal seasonal patterns. This approach
addresses the challenge of limited ground truth risk labels by creating training targets that reflect
expert knowledge about landslide risk factors. The model outputs probabilistic risk classifications
(Low, Medium, High Risk) with associated confidence scores, enabling risk aware decision making
in downstream applications.

A.2.2 GraphRAG Implementation Details

The Planning and Execution Agents collectively implement a sophisticated knowledge integration
and response generation system through GraphRAG pipelines. These agents address the critical need
for contextual understanding and automated response coordination in landslide risk management
scenarios. The Planning Agent leverages LLMs integrated with graph based knowledge retrieval
to provide context aware risk analysis and climate impact assessments. The agent maintains a
comprehensive knowledge graph representation of landslide events, their relationships, and associated
metadata including landslide profiles, geographic gazetteer points, and source attribution. This
structured knowledge representation enables sophisticated querying capabilities that support both
semantic similarity search and graph based relationship traversal. The retrieval mechanism employs
vector embeddings generated through Google Generative AI embedding models to create high
dimensional representations of landslide event descriptions, location information, and contextual
metadata. These embeddings are stored in Neo4j vector indexes alongside the graph structure,
enabling hybrid search capabilities that combine semantic similarity with graph traversal queries. The
system supports both vector similarity search for content based retrieval and Cypher query execution
for structured relationship based analysis.

The generation pipeline utilizes prompt engineering techniques specifically designed for landslide
risk analysis, incorporating domain specific templates that guide the language model to provide
comprehensive assessments covering risk patterns, geographic distribution, temporal trends, trig-
ger mechanisms, and climate change implications. The Execution Agent coordinates operational
responses through automated hotspot detection and response generation workflows. The agent inte-
grates predictions from the GNN-based Prediction Agent with contextual analysis from the Planning
Agent to generate spatially aware risk assessments and response recommendations. The hotspot
detection algorithm employs grid based spatial sampling to identify geographic regions with elevated
landslide risk potential.
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A.3 Preliminary Results and Evaluation Metrics

A.3.1 Graph Neural Networks Implementation Evaluation

Our Graph Neural Network (GNN) approach demonstrates significant computational advantages over
traditional computer vision methodologies while maintaining slightly higher predictive performance.
The spatial GNN achieves an F1-score of 0.7981 with only 42.7k parameters, representing a 99.9%
reduction in model complexity compared to the 31 million parameter 2D U-Net architecture employed
in recent Nepal landslide forecasting studies [26]. Despite this drastic reduction, our GNN matches
and marginally exceeds the performance of the U-Net (0.79 F1-score), while vastly outperforming
traditional machine learning baselines (0.54–0.56 F1-score).

Table 3: Performance comparison of baseline models and U-Net for landslide forecasting.
Approach Method F1-Score Precision Recall Params (M)
Nepal Study [26] RF 0.56 0.47 0.70 < 0.1
Nepal Study [26] XGB 0.54 0.45 0.67 < 0.1
Nepal Study [26] GB 0.56 0.49 0.65 < 0.1
Nepal Study [26] U-Net 0.79 0.91 0.69 31.0
CC-GRMAS (Ours) Spatial GNN 0.7981 0.8062 0.7928 <0.1

*Approximate ranges estimated from performance plots in [26].

Table 3 provides a comprehensive comparison between our spatial GNN and previously established
computer vision and machine learning approaches.

This extreme reduction in parameters translates directly to faster training times, lower memory
requirements, and improved deployment feasibility in resource constrained environments typical
of HMA. Beyond efficiency, the graph based formulation offers greater interpretability: spatial
dependencies are explicitly modeled through edge connections, while attention mechanisms highlight
the critical geographic relationships driving landslide susceptibility. Importantly, scalability benefits
are amplified when forecasting over larger regions, as graph representations grow linearly with the
number of landslide events rather than quadratically with image resolution, making our approach
more suitable for operational deployment across complex mountain terrains.

In summary, our spatial GNN model not only matches but slightly improves upon the predictive
accuracy of heavy weight computer vision models while operating with an order of magnitude fewer
parameters. This confirms that graph based spatial modeling provides an efficient, interpretable, and
scalable solution for landslide risk assessment in HMA.

A.3.2 GraphRAG Implementation Evaluation

The GraphRAG pipeline integrating the Planning and Execution Agents demonstrates effective
knowledge retrieval and contextual synthesis capabilities for landslide risk analysis across the High
Mountain Asia region. We evaluate the system’s performance through semantic coherence metrics
that measure the quality of retrieved information and generated responses against ground truth data
from the NASA Global Landslide Catalog.

Evaluation Methodology and Metrics The evaluation employs a semantic coherence metric that
quantifies how well the retrieved nodes and generated answers align with ground truth information.
The system was evaluated across multiple queries covering landslide events in Nepal, India, Pakistan,
China, Bhutan, and Bangladesh, with results averaged to provide aggregate performance measures.
Table 4 presents the detailed breakdown of the semantic coherence metric and its constituent compo-
nents.

The semantic coherence metric is computed using vector embeddings that transform textual de-
scriptions of landslide events into high dimensional semantic representations. Cosine similarity
measurements between these embeddings quantify the semantic alignment between retrieved nodes
and ground truth references. The weighted similarity component assigns higher importance to top
ranked results, reflecting user interaction patterns with retrieval systems. The diversity score captures
the variance in semantic content across retrieved nodes, ensuring comprehensive coverage rather than
redundant information.
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Table 4: Semantic Coherence Metric Components for GraphRAG Evaluation
Component Score Description
Overall Semantic
Coherence

0.751 Composite metric measuring retrieval quality and answer
relevance averaged across all HMA countries

Average Similarity 0.814 Mean cosine similarity between retrieved nodes and
ground truth across all retrieved results

Weighted Similarity 0.821 Position weighted similarity emphasizing higher ranked
retrieval results

Maximum Similarity 0.840 Best single node match indicating peak retrieval accuracy
of nodes

Minimum Similarity 0.797 Weakest node match showing lower bound of retrieval
quality

Diversity Score 0.143 Measure of information variety across retrieved nodes
balancing relevance with coverage

The system demonstrates consistent retrieval performance across diverse geographic contexts in the
HMA region. Query evaluation spanning Nepal, India, Pakistan, China, Bhutan, and Bangladesh
reveals robust knowledge graph traversal capabilities and effective semantic matching across different
reporting standards and source languages. The Planning Agent’s answer generation pipeline success-
fully synthesizes information from retrieved nodes to produce comprehensive assessments covering
temporal context, impact quantification, trigger identification, and geographic specificity across these
varied regional contexts.

The GraphRAG approach demonstrates distinct advantages over traditional keyword based retrieval
through semantic understanding capabilities and graph based relationship modeling. The vector
embedding approach captures conceptual relationships beyond exact keyword matches, enabling
retrieval of relevant events across different regional reporting conventions. The graph structure
provides interpretable retrieval pathways that support verification and enable multi-hop reasoning to
identify relationships between geographically or temporally separated events.

Implications and Future Directions The consistent performance across the six HMA countries
validates the system’s applicability for regional scale disaster management applications. The se-
mantic coherence score demonstrates that the GraphRAG pipeline effectively integrates structured
graph knowledge with flexible natural language generation capabilities. Future work will expand
evaluation protocols to include temporal range queries, multi-region comparative analysis, and trend
identification tasks to further validate operational readiness for deployment in disaster management
contexts.
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