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Fig. 5: 95% highest density interval (HDI) posterior estimates on synthetic data as we
sweep over various values of N (for the same population parameters). Note that the
posterior estimates cover the true value (gray triangles).

Answers to this question, applied across multiple
sectors and geographic locations, can help inform
future data collection strategies or triage intervention
opportunities.

We adopt the framework of [Man19], which accounts for
selection effects as well as measurement uncertainty. In
this work we augment that framework with additional
terms to accommodate the aggregate observations.
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