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Abstract

Developing effective mitigation strategies for greenhouse gas reduction hinges on
accurate emissions and metadata tracking to identify the most impactful reduction
opportunities. Given that emissions cannot be perfectly and ubiquitously observed,
constructing inventories entails fusing data from multiple sources that are of varying
levels of fidelity, quality, and completeness. This proposal suggests that Bayesian
models, powered by modern probabilistic programming frameworks, can integrate
multiple data sources data into posterior emissions estimates while also accounting
for incompleteness and leveraging data from less granular spatiotemporal scales.
A preliminary analysis combining country-level steel production data and facility-
level activity data shows promise for estimating emissions reduction potential when
there is a population of facilities that have not been directly observed.

1 Emissions inventories: potential impact and open challenges

There is an urgent need to rapidly and effectively reduce anthropogenic greenhouse gas (GHG)
emissions to blunt the impact of global temperature increases [1]. Accelerating progress in climate
change mitigation requires the ability to rapidly identify and prioritize high-impact, under-resourced
strategies for reducing atmospheric greenhouse gases. Central to this effort are emissions inventories
which quantify sources and sinks of greenhouse gases across regions, sectors, and time scales.
Modern inventories have advanced considerably, with some spanning multiple chemical species and
integrating observations from diverse spatial and temporal resolutions, e.g., [2, 3, 4, 5]. Despite
these improvements, there remains uncertainty as well as potential data gaps, particularly at finer
geographic scales or in lower resource regions, where estimates could be improved through the
inclusion of more specialized data sets and relevant prior knowledge. An open challenge is to
rigorously integrate this diverse information while maintaining defensible uncertainty quantification.

Bayesian methods offer a principled framework to help meet these challenges. By enabling the
integration of heterogeneous emissions and metadata across multiple scales, Bayesian reasoning can
estimate and correct for data set-specific biases, quantify uncertainties and degeneracy in posterior
estimates, and infer missing data through probabilistic imputation. This could not only improve the
completeness and accuracy of inventories, but also inform where additional sensing resources might
be most beneficial. Our proposal is to explore the application of these methods to improve both
modern emissions inventories and climate mitigation planning.
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2 Data and methods

We conducted an initial case study grounded in data from the Climate TRACE (Climate TRACE) [5]
emissions inventory, a data set with worldwide scope including over 600 million emissions sources
spanning multiple sectors. Many Climate TRACE sector teams leverage machine learning (ML) to
estimate activity based on signatures within remotely sensed data; however, not all facilities generate
sufficiently strong signals. Thus, facility-level data may be non-uniformly noisy, or potentially
missing altogether. In the event that a facility is missing, selection bias is likely since observability
and emissions are interrelated. Such selection effects manifest in other scientific domains where
inference of the underlying population, not just the directly observable population, is of value
e.g., [6,7,8].

Climate TRACE models bottom-up emissions via the coupled equations in eq. (1)
A;(t) = Ci(t) - CFi(t), E, 4(t) = Ai(t) - EF; 4. (), €))

where t denotes time (typically discrete; months or years), i facility, g gas species, A facility activity
level, C capacity of the facility, C'F' capacity factor (proportion of capacity utilized), E'F' an emissions
factor which converts activity into flux, and E emissions. For our study, we focus solely on activity;
however, models that incorporate all the emissions terms are of ultimate interest.

Here we consider a single sector (iron and steel manufacturing), a single country (Brazil), and propose
a model for analyzing monthly emissions data. The steel sector manifests interesting challenges —
there are competitive economic incentives for withholding facility-level production levels and, in
many cases, production information may only be available at the country level [O]. Our study uses
data from January of 2022, consisting of 22 known facilities for Brazil which we partition by the
facility-type used in manufacturing crude steel. The two relevant types in Brazil currently tracked by
Climate TRACE are blast-furnace-to-basic-oxygenation-furnace (BF-BOF) facilities and electric-arc
furnace (EAF) facilities. The former are a primary pathway for steel production and rely on iron ore,
whereas the latter rely on scrap steel and are less energy intensive [10]. Figure 1 shows a prototype
Bayesian hierarchical model where the values for upr, opr, tgar, and og 4 are determined by
conditioning on Climate TRACE data. We make an initial assumption that the missing facilities will
be selected at random from the BF-BOF population and introduce shared hyperparameters to model
this population. Our initial approach assumes the modeler is willing to hypothesize the number of
missing facilities n a priori; the idea is that one can sweep over hypotheses related to the number of
missing facilities and compare the posterior estimates to conclude which scenarios are most plausible.
Other approaches might be considered in a full study.

sigma_BF_mu sigma_BF_sigma mu_BF_mu mu_BF_sigma sigma_EAF

|
sigma_missing_BF mu_missing_BF sigma_BF mu_BF
activity_missing_BF activity BF
missing_asssts BF (1) known_assets_BF (9) nown_assets_EAF (13)

‘ activil
. _het_activity )

Figure 1: Plate diagram for scenario with n = 1 unobserved facilities. Shaded nodes indicate
observations, dashed nodes indicate deterministic variables, and rectangles indicate repeated variables

that are conditionally independent. The “net” activity nodes indicate aggregation of data from facility-
to country-level. Full definition of the conditional distributions is omitted due to space constraints.



To further inform parameters related to missing facilities, we incorporate an exogenous country-level
estimate of steel manufacturing activity taken from [1 1] (denoted econ_obs in fig. 1). This observed
value is approximately 17% higher than the sum of facility-level activities currently represented in
Climate TRACE suggesting one or more possible missing facilities'. We implemented this model
using the NumPyro probabilistic programming framework [12, 13].

3 Preliminary results

Inference for this model produced 7 (Gelman-Rubin statistic) values generally close to 1, indicating
reasonable convergence [14]. Figure 2 presents a subset of the posterior estimates. The left panel
shows that the model can successfully refine loose priors on the hyperparameters associated with the
population of BF assets; however, there is still substantial uncertainty that might be improved with
more refined modeling. In the right panel, we observe that, as the number of presumed missing assets
increases, the estimated net activity approaches the observed value, with the missing assets explaining
an increasing share of the activity gap. While we would not want to draw specific conclusions from
this preliminary model, it does suggest viability of the overall approach.
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Figure 2: Posterior estimates for select variables from fig. 1. The left panel shows estimates for
variables associated with BF population location. There is still fairly high uncertainty, likely due to
the wide range of activity values for BF assets. The right subplot shows the 95% highest density
interval (HDI) for two country-level aggregate activity variables, as a function of the number n of
presumed missing BF assets. The red vertical dashed line denotes the economic activity observation.
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4 Conclusions and proposed future work

Our study suggests that Bayesian methods are applicable to representative climate inventory chal-
lenges. A compete work would broaden the model’s scope (e.g., spatial, temporal), relax some of
the strong initial assumptions, conduct rigorous model comparison (e.g., [15]), and compare other
approaches for dealing with missing assets (e.g., [16]). We are also enthusiastic about identifying
additional auxiliary data sets that might be incorporated to improve these estimates.
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'There are other possible causes for this discrepancy, including noise and the fact that the economic data is
steel-specific and omits iron. For our initial exploration, we presume the unique explanation is missing facilities.
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