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Abstract

Al-driven weather forecasting models, particularly foundation models, have
achieved significant advancements in both speed and accuracy [6, 5, 8],
however, accurately forecasting rare, high-impact extreme events, such as
storms and heatwaves, remains a critical challenge [7]. These models of-
ten underestimate event intensity and frequency, limiting their reliability
in operational and risk-sensitive contexts. In this study, we investigate
uncertainty-aware extreme event forecasting using the recently introduced
time-series foundation model, Tiny Time Mixers (TTM) [1]. We develop
and compare two uncertainty quantification approaches, hyperparameter
ensembling and Monte Carlo (MC) dropout [2], and evaluate their ability
to improve classification of extreme events. Our results show that incorpo-
rating predictive uncertainty significantly enhances performance compared
to zero-shot TTM, and that the choice of uncertainty method and thresh-
old critically affects model behaviour. We find that the hyperparameter
ensemble yields more stable and accurate predictions, particularly for rare
storm events, highlighting the value of lightweight ensemble models for
uncertainty-calibrated forecasting.

Dataset: collection and preprocessing

We obtained weather data from 567 stations across Brazil via the Brazilian
National Institute of Meteorology (INMET) [3] web interface [4], covering
the period from 2000 to December 2023. Due to varying installation dates
and data gaps, not all stations span the full period. After quality checks,
we selected data from 2019-2023, which offered the best national coverage
with minimal missing values. Stations with more than 1

For training, validation, and testing, we applied a temporal split of 90
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Figure 1: A visual representation of the Tiny Time-Mixer (TTM) architec-
ture.
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Figure 2: An overview of the ensembling method used to generate the un-
certainty quantification metrics

Predictions and Evaluations Metrics

Here we present and example of forecasting and the confusion matrices rep-
resenting the exactness of the predictions reduced by the finetuned model.
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Figure 3: Batchwise extrapolation using PatchTSMixer. The variables were
normalized in order to enhance the visualization.

Normalized Confusion Matrices for Short Heatwave and Storm Events
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Figure 4: Batchwise extrapolation using PatchTSMixer. The variables were
normalized in order to enhance the visualization.
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