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Abstract

AI-driven weather forecasting models, particularly foundation models, have
achieved significant advancements in both speed and accuracy. However, accu-
rately forecasting rare, high-impact extreme events, such as storms and heatwaves,
remains a critical challenge. These models often underestimate event intensity and
frequency, limiting their reliability in operational and risk-sensitive contexts. In
this study, we investigate uncertainty-aware extreme event forecasting using the
recently introduced time-series foundation model, Tiny Time Mixers (TTM). We
develop and compare two uncertainty quantification approaches, hyperparameter
ensembling and Monte Carlo (MC) dropout, and evaluate their ability to improve
classification of extreme events. Our results show that incorporating predictive
uncertainty significantly enhances performance compared to zero-shot TTM, and
that the choice of uncertainty method and threshold critically affects model behav-
ior. We find that the hyperparameter ensemble yields more stable and accurate
predictions, particularly for rare storm events, highlighting the value of lightweight
ensemble models for uncertainty-calibrated forecasting.

1 Introduction

AI-driven, data-centric weather forecasting models have garnered substantial attention [23, 12],
particularly with the emergence of foundation models for climate science [3, 25, 4]. These models
have shown remarkable performance, offering improvements in both predictive accuracy and infer-
ence speed over usual numerical methods. In addition, they offer greater flexibility than classical
reduced-order techniques, which typically rely on hand-engineered dimensionality reduction and
may struggle to capture the nonlinearity of extreme events [27, 18, 20, 19, 21]. This has enabled
rapid ensemble simulations and probabilistic forecasts, making them invaluable for large-scale and
real-time prediction tasks [11, 5]. Despite these advances, a limitation remains: the ability of AI-
based climate emulators to accurately capture rare but high-impact extreme events, such as storms,
droughts, and heatwaves [24]. These events are inherently rare, presenting data imbalance challenges
[10, 26], and are often underestimated by neural forecasting models [22]. This underestimation may
stem from biases introduced by data scarcity or spectral smoothing effects [6]. An often overlooked
factor is the single-deterministic nature of inference in most foundation models. Despite stochasticity
during training, such models produce fixed outputs for a given input, hyperparameter setting, and
initialization [28, 13, 29]. To address the challenge, we propose an ensemble-based uncertainty
quantification framework using the recently introduced Tiny Time Mixer (TTM) ([8]), comparing
hyperparameter ensembling and Monte Carlo (MC) dropout to evaluate predictive uncertainty of
extreme events [15]. Our results show that modeling uncertainty improves detection and that tuning
its level is crucial for optimal performance. Hyperparameter ensembling outperforms MC Dropout,
offering more stable predictions, especially for rare events like storms, providing a stronger basis for
uncertainty-aware decision-making.
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2 Methods

Neural Architecture: TTM builds upon the TSMixer architecture [7], which was originally devel-
oped for multivariate time-series forecasting and has recently been applied to chemical kinetics [14],
as well as to other areas of scientific machine learning [16, 17]. It features a lightweight MLP-based
design, making it significantly smaller and more efficient than transformer-based models. The version
used in this study has approximately 1 million parameters, including both backbone and decoder.
Preprocessing involves normalizing the time series and applying a patching procedure that splits
the data into smaller chunks, preserving local structure while reducing computational cost [8]. The
encoder processes these patches using MLP blocks and gated attention, combining linear layers,
nonlinearities, and dropout to generate an intermediate embedding. The decoder reconstructs this into
the original space, and a final linear “head” maps it to the target forecast horizon. This streamlined
setup offers strong predictive power with low computational overhead. A schematic of the TTM
architecture is shown in Figure 1.
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Figure 1: a) Overview of the TinyTimeMixer architecture. b) A scheme demonstrating how the
Monte Carlo dropout is orchestrated.

Dataset and processing: We obtained weather data from 567 stations across Brazil via the Brazilian
National Institute of Meteorology (INMET) web interface [2], covering the period from 2000 to
December 2023. Due to varying installation dates and data gaps, not all stations span the full period.
After quality checks, we selected data from 2019–2023, which offered the best national coverage
with minimal missing values. Stations with more than 1% missing data were excluded, resulting in 18
stations. This threshold ensured that missing periods were short enough to minimize distortion from
imputation. Remaining gaps were filled using nearest-neighbor interpolation. For training, validation,
and testing, we applied a temporal split of 90%, 5%, and 5%, respectively. This setup provided
sufficient training data while allowing robust evaluation. We also benchmarked our fine-tuned models
against the base TTM using its zero-shot predictions, referred to throughout as the “zero-shot model”.
Extreme event classification: Extreme events were identified using a sliding window method applied
to temperature and pressure data, with thresholds derived from seasonal percentiles. A short heatwave
was defined as a 6-hour period where all temperature values exceeded the 95th percentile for the
respective month, while a storm was defined as a 6-hour period where all pressure values fell below
the 5th percentile. This approach captures consecutive extreme conditions, which are more impactful
than isolated anomalies, and accounts for seasonal variability across diverse locations. For further
details, see Appendix D.
Model Ensemble: In order to produce the model ensemble, we fine-tune multiple TTM versions,
each one for a different choice of hyperparameters, using the limits defined in Table 3. In the
evaluation stage, the test dataset is passed through the models ensemble generating a set of possible
solutions. In the end, we evaluated the mean and standard deviation curves for this set and used
them to create a confidence interval, as seen in Figure 2. The confidence interval in turn is used to
evaluate the indices of interest, occurrence of short heatwave and storms, according the following
criterion: Tens = Tmean + αT Tstd and Pens = Pmean + αP Pstd. This approach is based on the
assumption that increasing temperatures can compensate for model-induced losses, improving short
heatwave detection. Similarly, reducing pressure values may help mitigate false negatives in storm
event predictions. The hyperparameters αT and αP were tested using a hypersearch loop, however
our initial hyperparameter search did not reveal a significant improvement, leading us to adopt a
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limit of |αT | = |αP | = 2 as a reasonable choice for our experiments. For further details on the
experimental setup and computational cost, see Appendix C.
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Figure 2: Maximum temperature and pressure level forecasting for Brasilia (Brazilian capital). The
confidence interval was constructed using 2σ for each variable using the hyperparameter ensemble
method. The curves were created by composing the forecast length of our model over 4 days.

MC Dropout: To compare the uncertainty quantification in the time series forecasts of our ensemble
approach, we consider a Monte Carlo Dropout (MC Dropout) approach as a baseline. For details on
MC Dropout and implementation, see Apdx C.1. We apply this technique to the Tiny Time Mixer
(TTM) architecture for our best performing fine-tuned model to capture epistemic uncertainty in our
multivariate time series predictions. A schematic demonstrating how MC dropout is applied in the
TTM architecture is presented in Figure 1.

3 Results

We compare the predictive behavior of the hyperparameter ensemble method and the MC Dropout
method, for comparison with the zero-shot performance see Apdx A. As shown in Tables 1 and 2, MC
Dropout exhibits greater variability in predicted extreme event counts across uncertainty thresholds.
This is further quantified using the average coefficient of variation metric defined in Appendix E, with
per-location comparisons reported in Table 8. While MC Dropout performs slightly better at detecting
short heatwaves under conservative uncertainty (σT = 1), it consistently overestimates event counts
under higher uncertainty settings (σT = 2, σP = −1), particularly for storm events. In contrast, the
hyperparameter ensemble method yields more stable predictions across thresholds and aligns more
closely with observed event frequencies. This suggests that the ensemble approach is more suitable
for operational settings requiring tighter control over false positives and uncertainty calibration. To
further investigate this, we compare confusion matrices for each method at their respective optimal
uncertainty thresholds, selected based on aggregated event count accuracy. Specifically, we use
αT = 2 and αP = −1 for the ensemble method, and αT = 1 and αP = 1 for MC Dropout. The
normalized confusion matrices, shown in Figure 3, reveal that both methods perform comparably on
short heatwaves—hyperparameter ensemble slightly favors recall (0.63 vs. 0.60), while MC Dropout
has slightly higher precision (FP rate 0.06 vs. 0.07). However, for storms, the hyperparameter
ensemble achieves a substantially higher true positive rate (0.94 vs. 0.63) with minimal false
positives, whereas MC Dropout under-detects many true events. These findings reinforce that the
hyperparameter ensemble method offers better accuracy and stability, particularly in high-uncertainty
or rare-event regimes, making it the more appropriate choice when reliable uncertainty quantification
is critical.

4 Conclusion

We have fine-tuned the TTM using weather station data to forecast short-term events and evaluate ex-
treme event prediction, such as heatwaves and storms. We propose extending base fine-tuning through
hyperparameter ensemble and MC-dropout methods. Both approaches significantly outperform zero-
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Figure 3: Normalized confusion matrices for short heatwave and storm event classification using the
best-performing uncertainty thresholds for each method. Each matrix shows the true vs. predicted
labels for the hyperparameter ensemble (left panels) and MC Dropout (right panels) methods,
evaluated at the thresholds that most closely matched the observed event counts (αT = 2, αP = −1
for the ensemble method; αT = 1, αP = 1 for MC Dropout).

shot models in extreme events; however, hyperparameter ensemble offers improved accuracy and
stability compared to MC-dropout, particularly in high-uncertainty or rare-event scenarios, making
it preferable for reliable uncertainty quantification. While the model showcases reliable forecasts
respecting periodicity and trends, it still struggles to identify many extreme events based on the
metrics considered in this work. A significant finding reveals that small inaccuracies in temperature
and pressure predictions significantly impact the classification of extreme events, emphasizing their
sensitivity. Analysis suggests that generic fine-tuning approaches may not be effective for managing
class imbalance inherent to extreme event prediction. Developing a specific formalism focusing on
rare event detection using techniques such as class-balanced loss functions and ensemble methods
could enhance the model’s ability to capture these events. Despite significant differences in weather
patterns and event distributions, the model shows adaptability to varied conditions, indicating that
the TTM has the potential to perform well in diverse settings. This is further emphasized by the
diversity of extreme events across locations in our dataset which demonstrates the generalizability
of fine-tuning. Finally, while the architecture provides a strong foundation, further exploration of
decoder and head architectures, as well as strategies to mitigate amplitude discrepancies, could
enhance the model’s performance. These findings suggest that small, efficient models like TTM have
considerable potential to forecast extreme events and serve as a promising avenue for future research.
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A Zero-shot Performance

Fine-tuned Hyper-parameter Ensemble vs Zero-shot Performance: To evaluate the performance
of the TTM in predicting extreme weather events, we first compare the results of two different
approaches: a zero-shot model and our ensemble-based fine-tuned model approach. Table 9 presents
the zero-shot predictions, while Table 1 shows the fine-tuned ensemble predictions incorporating
uncertainty estimates. In the zero-shot scenario, where the model is applied without prior fine-tuning,
the predicted extreme event counts show considerable discrepancies when compared to observed
values. The aggregated results indicate an underestimation of short heatwave (SH) occurrences
and storm events. While some locations, such as Valença and Montes Claros, exhibit reasonable
alignment with observed counts, others, like Areia and Imperatriz, show significant underprediction,
highlighting the limitations of the zero-shot approach in capturing extreme events. In contrast,
the fine-tuned ensemble approach significantly improves predictive performance by incorporating
uncertainty. As shown in Table 1, the predicted counts with a confidence interval of 2σ align more
closely with the observed data. This improvement demonstrates that the ensemble-based fine-tuning
effectively mitigates underestimation, particularly in locations such as Maria da Fé, Brasilia, and
São Mateus, where zero-shot predictions were notably inaccurate. Moreover, the fine-tuned model
provides a better characterization of uncertainty, as observed in the range of values predicted across
different confidence levels (±1σ and ±2σ). This allows for a more robust assessment of extreme
events, improving the model’s reliability in critical scenarios. However, some locations, such as
Pradópolis, still exhibit discrepancies, indicating potential areas for further model improvement.
Importantly, our findings suggest that tuning the level of uncertainty is crucial for achieving optimal
extreme event classification. The observed improvements across multiple locations highlight the
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importance of selecting appropriate uncertainty scaling factors, which directly influence the balance
between under- and over-prediction. Our results emphasize that fine-tuning uncertainty parameters
can enhance the model’s sensitivity to extreme events, providing more reliable and actionable
insights for decision-making. In addition to the event counts, we evaluated both the zero-shot and
ensemble methods using precision, recall, and F1 score metrics which are presented in Appendix F.
Overall, our findings demonstrate that fine-tuning with an ensemble approach not only improves the
accuracy of extreme event prediction but also provides a more reliable framework for uncertainty
quantification of such events.

B Extreme Event Counts Across Locations

In the tables below we provide the event counts across locations for all of the methods considered in
this study.

Table 1: Extreme event counts across locations (real vs predicted with uncertainty) for the Hyperpa-
rameter Ensemble method.

Location Real SH Real Storm Pred. SH (αT = 1) Pred. SH (αT = 2) Pred. Storm (αP = 1) Pred. Storm (αP = −1)
Salvador 61 66 49 67 49 68
Maria da Fé 133 38 129 165 58 133
Carmo 165 99 188 233 122 167
Valença 196 136 54 80 65 97
Timóteo 86 80 119 159 46 79
Duque de Caxias 131 77 152 194 24 30
Pradópolis 148 52 0 0 12 22
Passa Quatro 128 52 135 191 29 39
Montes Claros 198 60 46 79 6 32
São Mateus 123 90 57 85 73 124
Areia 0 22 129 150 78 124
Imperatriz 70 44 117 148 37 52
Florianopolis 82 90 137 161 19 30
Conceicao das alagoas 126 67 88 124 61 123
Brasilia 157 35 56 80 51 67
Campos dos goytacazes 136 68 96 147 55 89
Itaberaba 77 75 126 145 48 74
Gama ponte alta 187 30 182 245 44 79

Aggregated 2204 1181 1860 2453 877 1429

Table 2: Extreme Event Counts Across Locations (Real vs Predicted with Uncertainty) for the MC
dropout approach.

Location Real SH Real Storm Pred. SH (αT = 1) Pred. SH (αT = 2) Pred. Storm (αP = 1) Pred. Storm (αP = −1)
Salvador 61 66 55 139 47 96
Maria da Fé 133 38 157 202 28 64
Carmo 165 99 141 197 50 159
Valença 196 136 190 258 105 206
Timóteo 86 80 69 109 50 111
Duque de Caxias 131 77 59 108 16 44
Pradópolis 148 52 107 169 26 56
Passa Quatro 128 52 166 242 52 71
Montes Claros 198 60 73 132 28 67
São Mateus 123 90 75 131 97 118
Areia 0 22 132 178 97 121
Imperatriz 70 44 113 179 36 87
Florianopolis 82 90 128 181 40 61
Conceicao das alagoas 126 67 77 132 103 93
Brasilia 157 35 59 95 44 55
Campos dos goytacazes 136 68 76 129 64 71
Itaberaba 77 75 102 148 53 62
Gama ponte alta 187 30 207 291 64 77

Aggregated 2204 1181 2065 2956 795 1938

C Model training and hyperparameter search details

We performed experiments using the backbones versions available from HuggingFace [1] within
a hypersearch pipeline in which just a few parameters of interest were left to be optimized. For
this work the hyperparameters we have chosen were fewshot fraction and context length. As the
backbones for TinyTimeMixer are defined with different choices for context and forecast lengths
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it means that different backbones can be downloaded for each hypersearch realization. We also
experimented with freezing the backbone during the finetuning stage, but we have seen that this
option has almost no discernable effect. The list of hyperparameter definition and values for the
hyperparamater optimization framework is given in Table 3. We executed a total number of 100 trials
based on the limits shown in Table 3 where the best model was selected based on the minimization
of the mean squared error. The best choices for the hyperparameters are shown in the last column.
All the experiments were performed using a single NVIDIA v100 GPU and took a total time of
approximately 6h to be finished. Using the same hardware, the model took 283 s to perform the
inference for all the test subdatasets. Inference using Monte Carlo (MC) dropout, on the other hand,
has taken approximately 635 s to produce results for 50 realizations.

Table 3: Hyperparameter definition and values used in our hyperparameter optimization framework.

Hyperparameter Description Values Best choice
fewshot fraction Fraction of data used 5% - 15% 9%

for few-shot fine-tuning
head dropout rate Dropout rate applied to the model’s head 0.4 -
dropout rate General dropout rate applied 0.4 -

throughout the model
learning rate Learning rate for the AdamW optimizer 0.001 -
Learning rate scheduler Method used to uptate the learning rate OneCycleLR -
batch size Batch size for training and evaluation 64 -
number of epochs Maximum number of epochs for training 50 -
freeze backbone Whether to freeze the backbone True -

during fine-tuning
context length Length of input sequence 512, 1024 1024
forecast length Length of forecasted output sequence 96 -
number of trials Number of trials for the hypersearch 100 -

C.1 MC Dropout Implementation for TTM

MC Dropout approximates Bayesian inference using standard dropout during both training and
inference [9]. Rather than disabling dropout at test time, MC Dropout performs multiple stochastic
forward passes through the model with dropout active, treating each pass as a sample from a variational
posterior. Given an input x, we compute T stochastic outputs {ŷ(t)}Tt=1 using different dropout
masks, and estimate the predictive mean and variance as:

E[y] ≈ 1

T

T∑
t=1

ŷ(t), Var(y) ≈ 1

T

T∑
t=1

(
ŷ(t) − E[y]

)2

.

To implement MC Dropout with the TTM architecture, we make lightweight but effective modi-
fications to the standard Hugging Face Trainer class. Our goal is to enable stochasticity during
inference in order to approximate Bayesian model uncertainty.
Dropout Activation During Evaluation: Normally, dropout layers are deactivated during evaluation.
To perform MC Dropout, we modify the training loop to keep the model in training mode (train()),
ensuring dropout remains active during inference. This allows each forward pass to use a different
dropout mask.
Injecting Stochasticity: We explicitly reinitialize the random number generator before each forward
pass using a new randomly generated seed. This guarantees that different dropout masks are sampled
across passes, while keeping all other components of the inference pipeline deterministic.
Ensuring Stability: To avoid introducing unintended variability from non-dropout components, such
as batch normalization, we retain these layers in evaluation mode throughout inference. This ensures
that the only source of randomness arises from dropout, allowing for a clean estimation of epistemic
uncertainty.
To evaluate this approach, we perform T stochastic forward passes over the same evaluation dataset,
recording the predicted outputs or losses for each pass. The predictive mean and variance are then
computed across these T samples. This provides an estimate of both the expected model output and
the associated uncertainty for each prediction.
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D Extreme Event Classification Details

We identify extreme events using a sliding window approach based on seasonal thresholds. For each
calendar month, we compute the 95th percentile of temperature and the 5th percentile of pressure
values. Short heatwaves are defined as periods of six consecutive hours where all temperature values
exceed the monthly 95th percentile, and storms are defined similarly for pressure falling below the
5th percentile.

A sliding window of size 6 is applied across the time series, labeling a segment as an extreme event if
all values within the window satisfy the respective condition. To account for overlapping detections
due to the sliding window, reported event counts are divided by the window length (6 hours) to
estimate the number of unique events.

This percentile-based method adapts to seasonal variability and generalizes across locations with
differing climate regimes. It emphasizes the detection of temporally clustered extreme conditions,
which are of greater practical importance than isolated anomalies. Real and predicted extreme event
counts are reported in Tables 1 and 9.

E Coefficient of Variation-Based Uncertainty Metric

To quantitatively compare the uncertainty estimates produced by the Hyperparameter Ensemble and
MC Dropout methods, we use the coefficient of variation (CV) as a relative uncertainty metric. For
each timestamp and location, we compute the temperature CV as CVT = σT /µT and the pressure CV
as CVP = σP /µP , where σ and µ denote the ensemble standard deviation and mean, respectively.
We report the average CV per location by taking the mean of all timestamp-level CVs:

CVT =
1

N

N∑
i=1

σ
(i)
T

µ
(i)
T

, CVP =
1

N

N∑
i=1

σ
(i)
P

µ
(i)
P

.

An overall uncertainty score per location is then defined as

CV =
CVT + CVP

2
.

For readability, temperature CVs are scaled by a factor of 102 and pressure CVs by 104. The resulting
average CV values are reported in Table 8.

F Model Classification Performance

F.1 Fine-tuned performance

Here we present the extreme event classification metric values for the ensemble methods described in
the main text.

F.2 Zero-shot performance

For completeness, we also include the results of the zero-shot predictions for extreme events which is
given below:
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Table 4: Performance metrics comparison across locations for the Hyperparameter ensemble method
with +1σ and +1σ uncertainty for temperature and pressure respectively.

Location SH Precision SH Recall SH F1 Storm Precision Storm Recall Storm F1
Salvador 0.347 0.279 0.309 0.971 1.000 0.985
Carmo 0.961 0.752 0.844 0.737 0.990 0.845
Valença 0.957 0.918 0.938 0.802 0.985 0.884
Timóteo 0.889 0.558 0.686 0.794 0.962 0.870
Pradópolis 0.824 0.662 0.734 0.658 1.000 0.794
Gama 0.967 0.786 0.867 0.933 0.933 0.933
Areia 0.000 0.000 0.000 1.000 1.000 1.000
Maria da Fé 0.830 0.842 0.836 0.949 0.974 0.961
Imperatriz 0.978 0.643 0.776 0.812 0.591 0.684
Florianopolis 0.930 0.646 0.763 0.702 0.967 0.813
Duque de Caxias 0.853 0.840 0.846 0.589 0.948 0.726
Passa Quatro 0.863 0.789 0.824 0.827 0.827 0.827
Brasilia 0.942 0.822 0.878 0.933 0.800 0.862
Campos dos Goytacazes 0.920 0.596 0.723 0.545 0.985 0.702
Itaberaba 0.786 0.571 0.662 1.000 0.893 0.944
São Mateus 0.781 0.610 0.685 0.910 0.900 0.905
Conceição das Alagoas 0.841 0.841 0.841 0.811 0.896 0.851
Montes Claros 0.879 0.808 0.842 0.747 0.983 0.849

Aggregated 0.877 0.740 0.799 0.798 0.936 0.852

Table 5: Performance metrics comparison across locations for the Hyperparameter ensemble method
with +2σ and -1σ uncertainty for temperature and pressure respectively.

Location SH Precision SH Recall SH F1 Storm Precision Storm Recall Storm F1
Salvador 0.343 0.377 0.359 1.000 0.742 0.852
Carmo 0.897 0.897 0.897 0.862 0.505 0.637
Valença 0.820 0.974 0.890 0.934 0.838 0.884
Timóteo 0.762 0.709 0.735 0.892 0.725 0.800
Pradópolis 0.767 0.824 0.795 0.848 0.750 0.796
Gama 0.861 0.893 0.877 1.000 0.800 0.889
Areia 0.000 0.000 0.000 1.000 0.545 0.706
Maria da Fé 0.660 0.947 0.778 1.000 0.763 0.866
Imperatriz 0.734 0.829 0.779 1.000 0.136 0.240
Florianopolis 0.847 0.878 0.862 0.973 0.789 0.871
Duque de Caxias 0.760 0.870 0.811 0.782 0.792 0.787
Passa Quatro 0.723 0.836 0.775 1.000 0.712 0.831
Brasilia 0.901 0.924 0.912 0.947 0.514 0.667
Campos dos Goytacazes 0.887 0.809 0.846 0.967 0.868 0.915
Itaberaba 0.700 0.727 0.713 1.000 0.680 0.810
São Mateus 0.646 0.772 0.704 1.000 0.611 0.759
Conceição das Alagoas 0.834 0.960 0.893 1.000 0.716 0.835
Montes Claros 0.776 0.960 0.858 1.000 0.733 0.846

Aggregated 0.782 0.865 0.819 0.947 0.699 0.791

Table 6: Performance metrics comparison across locations for the MC dropout method with +1σ and
+1σ uncertainty for temperature and pressure respectively.

Location SH Precision SH Recall SH F1 Storm Precision Storm Recall Storm F1
Salvador 0.309 0.279 0.293 1.000 0.712 0.832
Carmo 0.922 0.788 0.850 0.880 0.444 0.591
Valença 0.921 0.893 0.907 0.933 0.721 0.813
Timóteo 0.884 0.709 0.787 0.860 0.537 0.662
Pradópolis 0.765 0.615 0.682 0.943 0.635 0.759
Gama 0.934 0.821 0.874 0.922 0.711 0.802
Areia 0.000 0.000 0.000 1.000 0.947 0.973
Maria da Fé 0.800 0.820 0.810 0.951 0.921 0.936
Imperatriz 0.968 0.614 0.751 0.818 0.593 0.686
Florianopolis 0.888 0.656 0.756 0.769 0.613 0.683
Duque de Caxias 0.880 0.821 0.849 0.652 0.852 0.738
Passa Quatro 0.871 0.809 0.839 0.851 0.760 0.803
Brasilia 0.955 0.833 0.890 0.944 0.800 0.867
Campos dos Goytacazes 0.883 0.627 0.734 0.632 0.781 0.699
Itaberaba 0.774 0.558 0.647 0.975 0.862 0.915
São Mateus 0.782 0.642 0.705 0.897 0.779 0.834
Conceição das Alagoas 0.793 0.793 0.793 0.821 0.744 0.780
Montes Claros 0.874 0.803 0.837 0.745 0.983 0.847

Aggregated 0.865 0.751 0.804 0.826 0.776 0.800
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Table 7: Performance metrics comparison across locations for the MC dropout method with +2σ and
-1σ uncertainty for temperature and pressure respectively.

Location SH Precision SH Recall SH F1 Storm Precision Storm Recall Storm F1
Salvador 0.353 0.803 0.490 0.688 1.000 0.815
Carmo 0.792 0.945 0.862 0.623 1.000 0.767
Valença 0.729 0.959 0.828 0.650 0.985 0.784
Timóteo 0.670 0.849 0.749 0.712 0.988 0.827
Pradópolis 0.680 0.791 0.731 0.486 0.981 0.650
Gama 0.870 0.950 0.909 0.815 0.941 0.874
Areia 0.000 0.000 0.000 0.919 0.973 0.945
Maria da Fé 0.783 0.872 0.825 0.884 0.974 0.927
Imperatriz 0.916 0.771 0.837 0.750 0.818 0.783
Florianopolis 0.833 0.707 0.765 0.682 0.720 0.700
Duque de Caxias 0.789 0.809 0.799 0.585 0.852 0.694
Passa Quatro 0.812 0.844 0.828 0.674 0.865 0.757
Brasilia 0.918 0.846 0.880 0.902 0.800 0.848
Campos dos Goytacazes 0.765 0.713 0.738 0.519 0.698 0.595
Itaberaba 0.682 0.636 0.658 0.853 0.828 0.840
São Mateus 0.668 0.715 0.690 0.741 0.800 0.769
Conceição das Alagoas 0.740 0.746 0.743 0.775 0.697 0.734
Montes Claros 0.854 0.803 0.828 0.740 0.983 0.844

Aggregated 0.774 0.768 0.764 0.698 0.811 0.741

Table 8: Comparison of Average Coefficient of Variation (CV) Between Hyperparameter Ensemble
and MC Dropout Methods Across Locations. Temperature CVs are scaled by 10−2 and Pressure CVs
by 10−4.

Location CVT (Hyper) CVT (MC) CVP (Hyper) CVP (MC) CV (Hyper) CV (MC)

Salvador 0.646 0.965 1.742 2.682 0.332 0.496
Maria da Fé 1.764 2.565 2.057 3.159 0.893 1.298
Carmo 1.333 1.985 3.021 4.638 0.681 1.016
Valença 1.491 2.242 3.104 4.714 0.761 1.145
Timóteo 0.812 1.207 2.538 3.926 0.419 0.623
Duque de Caxias 1.499 2.244 3.639 5.468 0.768 1.150
Pradópolis 1.562 2.250 2.197 3.425 0.792 1.142
Passa Quatro 1.683 2.470 2.202 3.394 0.852 1.252
Montes Claros 1.375 2.006 2.105 3.259 0.698 1.019
São Mateus 0.893 1.338 2.582 3.958 0.459 0.689
Areia 1.010 1.476 1.215 1.890 0.511 0.748
Imperatriz 1.050 1.463 1.505 2.278 0.533 0.743
Florianopolis 0.970 1.467 4.217 6.317 0.506 0.765
Conceição das Alagoas 1.436 2.070 1.983 3.077 0.728 1.050
Brasilia 1.246 1.792 1.570 2.462 0.631 0.908
Campos dos Goytacazes 1.104 1.650 3.366 5.116 0.569 0.851
Itaberaba 1.216 1.768 2.109 3.194 0.618 0.900
Gama ponte alta 1.369 1.957 1.586 2.472 0.692 0.991

Aggregated 1.248 1.829 2.374 3.635 0.636 0.932

G Comparison between Ensemble Forecasting and MC Dropout for others
stations

The Figures above show the comparison in the uncertainty forecast approaches for each weather
station where the hyperparameter ensemble method forecasts are the top panels and the MC dropout
forecasts are the bottom panels. It is observable that the MC Dropout has a trend to produce larger
confidence intervals compared to the hyperparameter ensemble approach.

11



Table 9: Zero-Shot Model Event Counts

Location Real SH Count Real Storm Count Pred. SH Count Pred. Storm Count
Salvador 61 66 12 58
Carmo 165 99 91 71
Valença 196 136 142 108
Timóteo 86 80 46 68
Pradópolis 148 52 84 49
Gama 187 30 142 25
Areia 0 22 0 13
Maria da Fé 133 38 120 36
Imperatriz 70 44 38 6
Florianopolis 82 90 38 82
Duque de Caxias 131 77 63 64
Passa Quatro 128 52 80 36
Brasilia 157 35 121 20
Campos dos Goytacazes 136 68 80 60
Itaberaba 77 75 6 47
São Mateus 123 90 67 78
Conceição das Alagoas 126 67 108 32
Montes Claros 198 60 168 53

Aggregated 2204 1181 1406 906

Table 10: Zero-Shot Model Performance Metrics

Location SH Precision SH Recall SH F1 Storm Precision Storm Recall Storm F1
Salvador 1.000 0.197 0.329 0.862 0.758 0.806
Carmo 0.967 0.533 0.687 0.972 0.697 0.812
Valença 0.944 0.684 0.793 0.935 0.743 0.828
Timóteo 0.870 0.465 0.606 0.941 0.800 0.865
Pradópolis 0.893 0.507 0.647 0.857 0.808 0.832
Gama 0.887 0.674 0.766 1.000 0.833 0.909
Areia 0.000 0.000 0.000 1.000 0.591 0.743
Maria da Fé 0.767 0.692 0.727 0.972 0.921 0.946
Imperatriz 0.684 0.371 0.481 1.000 0.136 0.240
Florianopolis 0.921 0.427 0.583 0.939 0.856 0.895
Duque de Caxias 0.984 0.473 0.639 0.859 0.714 0.780
Passa Quatro 0.988 0.617 0.760 0.917 0.635 0.750
Brasilia 0.950 0.732 0.827 0.950 0.543 0.691
Campos dos Goytacazes 0.825 0.485 0.611 0.850 0.750 0.797
Itaberaba 1.000 0.078 0.145 0.979 0.613 0.754
São Mateus 0.821 0.447 0.579 0.974 0.844 0.905
Conceição das Alagoas 0.833 0.714 0.769 1.000 0.478 0.646
Montes Claros 0.863 0.732 0.792 0.925 0.817 0.867

Aggregated 0.896 0.565 0.675 0.937 0.714 0.796
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Figure 4: Uncertainty forecast comparison for the hyperparameter ensemble methods (top panel) and
the MC dropout method (bottom panel). Station located in Campos dos Goytacazes (Rio de Janeiro
state).
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Figure 5: Uncertainty forecast comparison for the hyperparameter ensemble methods (top panel)
and the MC dropout method (bottom panel). Station located in Florianópolis (Santa Catarina state
capital).
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Figure 6: Uncertainty forecast comparison for the hyperparameter ensemble methods (top panel) and
the MC dropout method (bottom panel). Station located in Salvador (Bahia state capital).
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