Towards the Automatic Analysis of Ceilometer Backscattering Profiles using Unsupervised Learning

Michael Dammann¹ Ina Mattis² Michael Neitzke¹ Ralf Möller³

michael.dammann@haw-hamburg.de

Tackling Climate Change with Machine Learning NeurIPS 2022

Ceilometers

Example measurement - "Quick Look"

Simple LIDAR system Vertical laser beam Continuously measuring backscattered light

https://www.dwd.de/DE/service/lexikon/Functions/glossar.html?lv2=100510&lv3=100538 https://www.dwd.de/DWD/forschung/projekte/ceilomap/files/Saharan_dust_example_en.pdf (GMT)

[km]

The Problem

Data is unlabeled

At the moment: analyzed manually by meteorology experts

→ Unsupervised Machine Learning

- Climate science insights, like frequent, but not necessarily obvious, phenomena
- Automatic detection of situations with specific meteorological conditions for more detailed case studies, e.g., on aerosol-cloud interactions

The Approach

Output: Slices of individual window sizes

Output: **Enriched Slice Representations**

Output: Assignment of slices to clusters

Proof of Concept: Results

Conclusion and Outlook

- First proof of concept is considered successful
- Reasonable meteorological phenomena in each cluster

- Approach presents general framework for future
- Fine-tune, change and/or connect the steps
- Acquire partially labeled dataset, new options:
 - semi-supervised learning
 - better evaluation (used as test data), introduce external metrics