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Abstract

Oceans will play a crucial role in our efforts to combat the growing climate emer-
gency. Researchers have proposed several strategies to harness greener energy
through oceans and use oceans as carbon sinks. However, the risks these strategies
might pose to the ocean and marine ecosystem are not well understood. It is
imperative that we quickly develop a range of tools to monitor ocean processes and
marine ecosystems alongside the technology to deploy these solutions on a large
scale into the oceans. Large arrays of inexpensive cameras placed deep underwater
coupled with machine learning pipelines to automatically detect, classify, count
and estimate fish populations have the potential to continuously monitor marine
ecosystems and help study the impacts of these solutions on the ocean. In this
proposal, we discuss the challenges presented by a dark artificially lit underwa-
ter video dataset captured 500m below the surface, propose potential solutions
to address these challenges, and present preliminary results from detecting and
classifying 6 species of fish in deep underwater camera data.

1 Introduction

Oceans and seas cover more than 70% of the planet. They directly employ 56 million people, host
80 percent of the planet’s biodiversity, regulate our climate and are responsible for at least 50%
of oxygen on Earth. Despite their vital role in our climate, oceans have so far remained largely
unobserved and not understood on a large scale owing to the extremely high costs and complexity
involved in studying such a large ecosystem. Precisely because of their vastness and complexity, they
play an outsized role in regulating our climate[1, 2, 3].

Many studies indicate that oceans act as a buffer against climate change[4, 5]. Strategies to increase
the alkalinity of the oceans and accelerate the weathering processes that naturally consume CO2
from the atmosphere[6] or harvest tidal energy to generate greener alternative energy [7, 8, 9] are
proposed as potential solutions to harness oceans to mitigate climate change. Despite careful efforts
by researchers to assess the risks involved with adopting these solutions, the long-term consequences
of these strategies on the ocean ecosystem are not very well understood[10]. With aggressive targets
needed to prevent average global temperature from rising more than 2◦C in the next few decades[11],
we will need to adopt some or all of these strategies to be able to address this climate emergency
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before fully understanding the risks these strategies might pose[12, 13]. It is thus critical that we
develop affordable, scalable and automated ocean monitoring solutions with low carbon footprints to
closely monitor the effects of these solutions on the oceans and the marine ecosystems.

We explore placing cheap underwater cameras along with a light source and bait deep underwater to
acquire a dataset with different species of fish and apply machine learning techniques on this dataset
to monitor marine ecosystems. The primary objective of this research is to detect and classify different
species of fish in underwater video data. A secondary objective of this research is to determine the
number of samples of different species of fish required to develop an efficient and accurate deep
learning model to inform data collection and annotation efforts. In this proposal, we present the
results from training a model to classify and detect 6 species of fish and argue that 2000 samples
of each class are sufficient to train a model successfully. Additionally, we identify the challenges
involved with detecting and classifying the rarer species in the dataset and propose strategies to
address the challenges involved with this dataset. Finally, we identify the challenges and opportunities
that must be solved to scale such a system worldwide to meaningfully tackle climate action.

1.1 Related Work

Traditionally, ocean and marine ecosystems have been monitored using high frequency radar, ocean
gliders and animal tagging[14, 15, 16]. These techniques are invasive, human resource intensive,
expensive and will not scale to meet the climate emergency[17]. Much research is underway to replace
these traditional monitoring techniques with different forms of electronic monitoring using audio and
video devices like cameras, satellites, echosounders, and other acoustic devices[18, 19, 20, 21, 22, 23].
However, image-based machine learning research for life underwater has been limited to deploying
cameras on fishing vessels, shallow waters, aquariums or aquaculture establishments, with very
limited work extending these camera monitoring systems to deep underwater because of the challenges
involved in acquiring and analyzing underwater video data below the sunlight zone. To our knowledge,
marine ecosystems at these depths have not been captured by cameras with these resolutions, and
machine learning applications to analyse this data have not been explored. Continuous and automated
video monitoring pipelines to estimate fish abundance will be an invaluable tool in assessing the
impact of climate change on marine ecosystems.

Figure 1: a) Variation of brightness in the dataset. b) Variation of average brightness over time.
Brightness measured by the average "Value" channel in HSV color space across frames of each video.
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2 Data and preliminary results

Inexpensive cameras with bait to attract fish and a battery-powered light source were placed and
later recovered from an approximate depth of 450-500m along the marine slopes of the Northeast
Newfoundland marine refuge to determine the impact of nearby seismic testing on fish in the marine
protected area[24]. There is no meaningful light past 200 meters[25] due to limited sunlight penetra-
tion and the 6V battery depletes over time resulting in low and decreasing average brightness (Fig. 1).

Figure 2: Performance comparison of
models trained on balanced subsets of
200, 500, 1000, 2000, all samples for 6
species of fish on the ocean floor.

.5221 videos, recorded at 30fps, with an average video
length of 5 minutes, were annotated by a fish expert at DFO
using the VIAME[26] platform. The annotated dataset has
11 species of fish, with unbalanced sampling. Six species
are well represented but some appear in only a single video.

2.1 Preliminary results

The 221 videos were partitioned into training, validation
and test splits with a a 70-15-15 ratio based on the distri-
bution of the frequency of frames with fish in each video.
Balanced subsets of 200, 500, 1000 and 2000 frames from
the 6 species with at least 2000 distinct training objects
were randomly sampled from the training set. Detection
and classification models based on YOLOv4[27] architec-
ture were trained on each subset to quantify the number of annotated samples required to train an
effective model. We found that 2000 samples, representative of the larger test set, at an IoU threshold
of 0.4 are sufficient to train a classification and detection model on this dataset(Fig . 2).

3 Future work

We demonstrated that YOLO-based models can detect and classify fish species 500m underwater
given a sufficient number of training examples. However, such datasets naturally have large class
imbalances (e.g. our other 5 species) because the ocean floor is sparsely populated by fish and fish
species are unevenly distributed. An automated system for monitoring rare at-risk species will require
models that can a) efficiently classify species with as little as a single unique instance and b) detect
and catalogue species the model has not previously seen. Towards this goal, we propose exploring
an R-CNN family[28, 29] model to train classifiers and detectors separately: training the detector
to segment fish, freezing the detector’s layers; and training classifiers using small balanced subsets
from identified species. Furthermore, we propose experiments augmenting the sample size of rarer
species using generative models[30, 31, 32], optimizing training by subsampling efficiently to use all
the training data while using balanced subsets, using statistical methods like joint probabilistic data
association filters[33] to track and count fish across frames, and training with water frames to develop
an efficient population estimation algorithm. Marine conservation research using deep underwater
video data has incredible potential if the enormous and expensive manual effort can be reduced by
machine learning strategies like one-shot or few-shot learning, leveraging large foundation models
for Imagenet and using acoustics alongside video to aid classification and detection.

In addition to machine learning model development, there are several large challenges that must be
solved to deploy automated analysis and continuous monitoring camera systems deep underwater on
a large scale: replenishing/circumventing using bait to attract fish to the camera; limited on-chip data
storage, resources to store and process large amounts of data; trained interdisciplinary scientists and
operators to acquire and process the data; verification and generalisability to variations in habitat,
camera resolutions, to name a few. Although this research focused on classifying and detecting
different species of fish and estimating population, we see this as the first step towards the larger
goal of worldwide monitoring of life underwater which will require a concerted effort from multiple
diverse groups including experts in machine learning, biology, and oceanography as well as social
scientists and Indigenous peoples. If successful, such research will enable the safe development of
tidal power, safe development and application of carbon removal technology, better monitoring of at
risk fish in marine protected areas, and other upcoming solutions to help address our climate threat.
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