

UNIVERSITÄT

OESCHGER CENTRE
CLIMATE CHANGE RESEARC

Deep-S2SWind: A data-driven approach for improving Sub-seasonal wind predictions

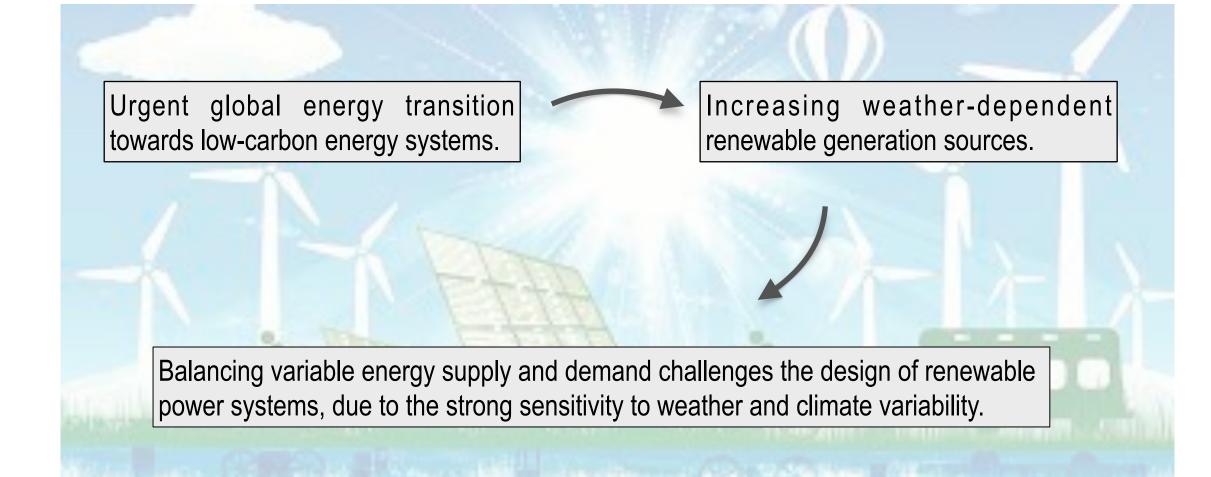
Noelia Otero and Pascal Horton

NeurIPS 2022: Tackling Climate Change with Machine Learning Workshop
9-December-2022

Motivation

UNIVERSITÄT

OESCHGER CENTRE
CLIMATE CHANGE RESEARCH

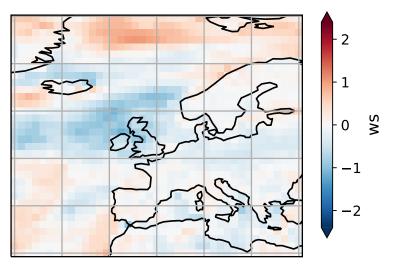


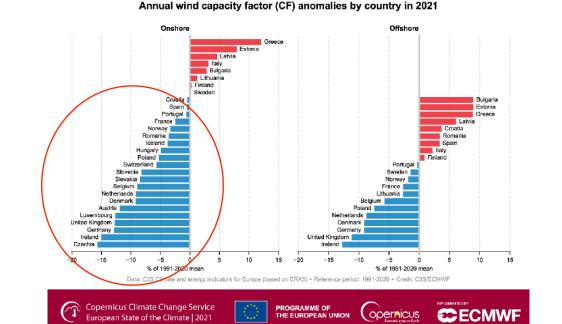
Motivation

UNIVERSITÄT Bern

OESCHGER CENTRE
CLIMATE CHANGE RESEARCH

2021 JJA 10m Wind speed anomalies





The need for predicting and understanding the spatio-temporal variability of *wind droughts* (prolonged low wind speed conditions) is a pressing issue for the energy sector.

Wind droughts can occur at *Subseasonal-to-seasonal (S2S)* timescales, thus, providing skilful predictions of wind speed offer an opportunity to the wind energy sector for maintenance tasks and optimally trade power on the markets.

Objective

UNIVERSITÄT RERN

OESCHGER CENTRE
CLIMATE CHANGE RESEARCH

- Develop a data-driven ML approach to forecast *wind droughts* episodes at S2S timescales, which have a strong impact on the energy sector.
- Provide further insights to assess the feasibility of data-driven ML for predicting weather extreme events.
- Investigate windows of opportunity that lead to enhanced predictability at S2S by incorporating climate indices (e.g., MJO, ENSO, NAO).

Data and Methods

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT RERN

OESCHGER CENTRE

ERA 51: 1959-2021

Time resolution: Daily (original hourly)

Spatial resolution: 1° x1° (original 0.25° x 0.25°)

Variables:

- Geopotential height
- Temperature
- Zonal(U) and Meridional(V) wind components
- Mean sea level pressure
- 2m temperature
- Total column water vapor
- 10m wind speed

Levels:

200,300,500,850,1000 hPa 200,300,500,850,1000 hPa 200,300,500,850,1000 hPa

- -
- -
- -
- -

Wind drought (WD) definition:

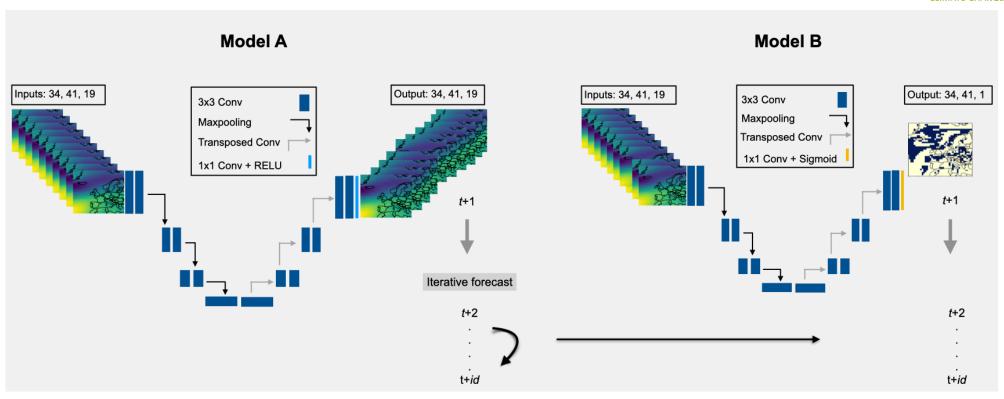
$$WD_{ij} = egin{cases} 1 & ext{if 10 ws}_{ij} \leq th_{10} \ 0 & ext{otherwise} \end{cases}$$

For each *ij* (lon/lat) grid-point

Methods

UNIVERSITÄT

OESCHGER CENTRE
CLIMATE CHANGE RESEARCH



We propose two based models:

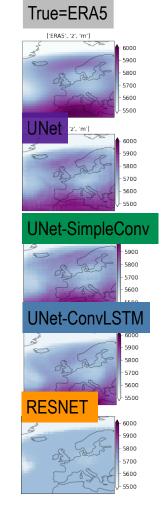
- Model A: To create iterative predictions up to 42 days (lead times).
- Model B: After the training, with outcomes of low wind extremes, model B aims at forecasting low wind speed
 events (i.e., WD) at longer lead times using the iterative predicted fields model A.

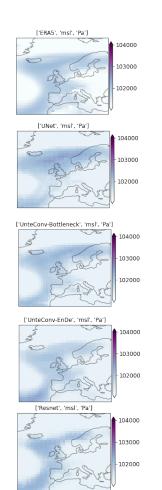
Preliminary results

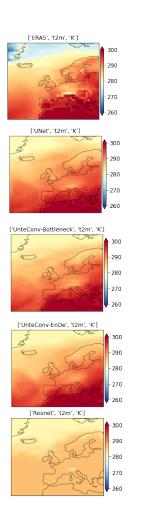
\boldsymbol{u}

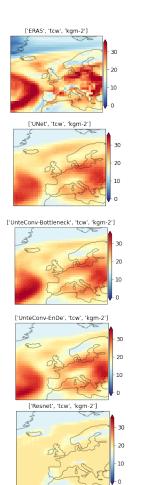
Performance of different networks for Model A

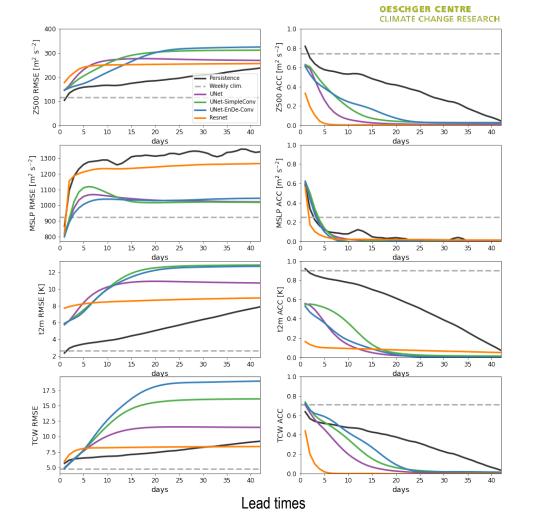
b Universität Bern











Ongoing and Future work

Model evaluation:

Model A:

Benchmarks: Persistence, climatology, S2S database Metrics: RSME & ACC (as in WeatherBench, Rasp, 2020)

Ground truth: ERA5

Model B:

Metrics: AUC, precision & recall

Ground truth: ERA5

- Modify **model A** and adapt **model B**: Test other architectures recently emerged in the literature for data-driven approaches (*Pangu-Weather, Bi et al., 2022; Keisler, 2022*).
- Time-aggregation to weekly time-scales to further test the models to S2S timescales.
- Incorporate climate indices (e.g., MJO, ENSO, NAO).

UNIVERSITÄT

OESCHGER CENTRE
CLIMATE CHANGE RESEARCH

b Universität Bern

OESCHGER CENTRE

Thank you!

Contact information:

noelia.otero@giub.unibe.ch pascal.horton@giub.unibe.ch

Related materials: https://github.com/noeliaof/NeurIPS22 Workshop ClimateAl