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● Scenario: During floods aerial data is crucial to assess the affected areas.

● Existing work: VQA on FloodNet Kane and Khose (2022). However their system 

lacks real world deployability. 

● Problem: Delay for label generation.

● Solution 1: Don’t use labels! - Zero-shot VQA
● Solution 2: Train your model continually as labels are generated - Continual VQA

https://arxiv.org/abs/2205.15025
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Our Tasks for Continual VQA

1. Task 1: Image Condition 
2. Task 2: Road Condition 
3. Task 3: Yes/No
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Thank you!

Check out our paper and code!
● Paper: arxiv.org/abs/2209.10320 
● Code: github.com/AdityaKane2001/continual_vqa 

(give us a ⭐ if you like our work!)
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