Continual VQA for Disaster
Response Systems

“'

Aditya Kane V Manushree Sahil Khose



Introduction

e Scenario: During floods aerial data is crucial to assess the affected areas.



Introduction

e Scenario: During floods aerial data is crucial to assess the affected areas.
e [Existing work: VQA on FloodNet Kane and Khose (2022). However their system
lacks real world deployability.



https://arxiv.org/abs/2205.15025

Introduction

e Scenario: During floods aerial data is crucial to assess the affected areas.

Existing work: VQA on FloodNet Kane and Khose (2022). However their system
lacks real world deployability.

e Problem: Delay for label generation.



https://arxiv.org/abs/2205.15025

Introduction

e Scenario: During floods aerial data is crucial to assess the affected areas.

Existing work: VQA on FloodNet Kane and Khose (2022). However their system
lacks real world deployability.

e Problem: Delay for label generation.
Solution 1: Don't use labels! - Zero-shot VQA



https://arxiv.org/abs/2205.15025

Introduction

e Scenario: During floods aerial data is crucial to assess the affected areas.
Existing work: VQA on FloodNet Kane and Khose (2022). However their system
lacks real world deployability.

e Problem: Delay for label generation.

Solution 1: Don't use labels! - Zero-shot VQA
e Solution 2: Train your model continually as labels are generated - Continual VQA
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FloodNet dataset
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FloodNet dataset

Types of tasks
1. Classification

2. Segmentation
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Types of questions for VQA

Condition Recognition
1.1. Image Condition
1.2. Road Condition
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Types of questions for VQA

Condition Recognition
1.1. Image Condition
1.2. Road Condition
Yes/No

Counting Problem
3.1. Simple Count
3.2. Complex Count

Real Image

What is the overall condition of the
given image?

How many buildings are non flooded?

How many buildings are in this image?

Is the entire road flooded? No
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Types of questions for VQA

Condition Recognition
1.1. Image Condition
1.2. Road Condition
Yes/No

Counting Problem
3.1. Simple Count
3.2. Complex Count

Real Image

How many buildings are non flooded? 6

How many buildings are in this image? 6
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Types of questions for VQA

Condition Recognition
1.1. Image Condition
1.2. Road Condition
Yes/No

Counting Problem
3.1. Simple Count
3.2. Complex Count

Image Condition
32.1%

Yes/No

19.2%

Simple Count

14.1%

Complex Count

15.4%

Road Condition

19.2%



VQA Pipeline
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Our Approach for FloodNet VQA
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Zero-shot VQA system
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2. CLIP features for supervised training
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Results

Kane and Khose (2022)
CLIP out-of-the-box (ZS)

CLIP supervised (Best)

o Zero-shot VQA system
1. CLIP out-of-the-box

2. CLIP features for supervised training

Method Taskwise Accuracy
Overall | Yes/No | Image Condition | Road Condition
CNX-mul 98.03 98.31 98.62 97.18
CLIP-ZS 35.56 15.12 41.72 83.14
CLIP-add 93.99 88.37 95.17 97.67
CLIP-cat 92.97 81.97 95.86 97.06
CLIP-mul 96.4 97.71 95.17 97.14
CLIP-mul-taskwise | 98.33 98.85 98.43 97.71




Our Approach for FloodNet VQA

o Zero-shot VQA system

m 1. CLIPout-of-the-box

m 2.CLIPfeatures for supervised training
o Continual VQA system

m Trained on continuous stream of data
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Our Tasks for Continual VQA

Simple Count
14.1%

1. Task 1:Image Condition
2. Task 2: Road Condition

Image Condition

3. Task 3:Yes/No .
Complex Count
15.4%
‘ Road Condition
Yes/No 19.2%

19.2%
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Experience replay methods used
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Accuracy

CL Results
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Observations
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CLIP out-of-the-box performs poorly

CLIP features for supervised training outperforms state-of-the-art on
FloodNet VQA

For Continual Learning: Reservoir Sampling performs the best.

"Image Condition" and "Road Condition" tasks yield consistent results.
"Yes/No" task hampers the performance.
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Conclusion

e We explore the Continual VQA setup, which has been unexplored before, especially in
disaster response tasks like FloodNet.

e We propose a light-weight model with online training capability and also suggest the
order of task labels to be provided for optimal performance of the deployed model.
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Thank you!

Feel free to reach us out in case of any questions
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Aditya Kane V Manushree Sahil Khose
adityakanel@gmail.com manushree635@gmail.com sahil.khose@gatech.edu

Check out our paper and code!
e Paper: arxiv.org/abs/2209.10320
e Code: github.com/AdityaKane2001/continual vga
(give us a 1 if you like our work!)
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