Learning Surrogates for Diverse Vehicle Emission Models

Edgar Ramirez Sanchez Catherine Tang Vindula Jayawardana Prof. Cathy Wu

Motivation

- Emission modeling for transportation is crucial
- MOVES as the industry standard
 - Provided and enforced by EPA
 - Used by transportation offices and policy makers across the US.
 - Very comprehensive
- Emerging transportation strategies from advances in interconnectivity, decision-making systems, ML

What is the issue with current models?

Lack of a model that is:

- 1. Diverse (breadth of inputs)
- 2. Instantaneous (second by second emissions)
- 3. Programmatic (ease of use and running time)

Features Models	Fuel Variety	Road Grade	Vehicle Typ	vehicle Age	Instantaneo	us Programmatic
MOVES [16]	✓	✓	✓	✓	X	X
FastSIM [3]	\checkmark	\checkmark	\checkmark	\checkmark	X	\checkmark
HBEFA [8]	✓	✓	\checkmark	\checkmark	\checkmark	x
PHEM [4]	*	\checkmark	*	X	X	X
MOVESTAR [18]	X	X	*	X	✓	\checkmark
Ours	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Goal

Objective: Calculate CO2 Emission of a given trajectory

Driving behavior

- Links
- Driving cycles

Specifications:

- Vehicle Type and Age
- Fuel type

Environment:

- City
- Time of Year
- Hour of the Day

MOVES is not suitable for some analyses

Roadway interventions [strategies/technologies]

Impact Assessment tools

Infrastructure, technology, etc.

EV adoption

Industry Standard

Emerging Behavioral-based **Eco Driving**

Lagrangian Congestion mitigation ???

Why - Extend and improve MOVES-model use

- MOVES hard to use for behavioral analyses: Default driving cycle, cumbersome program
- 2) Retrospective approach

3) Other instantaneous and programmatic approaches lack diversity

Features Models	Fuel Variety	Road Grade	Vehicle Type	Vehicle Age	Instantaneo	us Programmatic
MOVES [16]	✓	✓	√	✓	X	x
FastSIM [3]	\checkmark	\checkmark	✓	\checkmark	x	\checkmark
HBEFA [8]	\checkmark	\checkmark	\checkmark	✓	\checkmark	X
PHEM [4]	*	\checkmark	*	X	x	X
MOVESTAR [18]	X	X	*	X	✓	✓
Ours	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Contribution:

Diverse: fuel types, vehicle types, road grades, vehicle ages, and cities of interest.

Instantaneous: able to calculate the emissions for an action taken within a single time step

Lightway-programmatic:

have an API or scripted-based queries and results can be returned quickly

Methodology: Reverse engineer MOVES

Fitting

- Fit a third order two-variable polynomial
- Utilized sklearn LinearRegression
- Also considered higher order polynomials and a neural network

Emission Model (Passenger Car of Age 2 on 30% grade road)				
Speed (m/s)	Accel (m/s^2)	Emissions (g CO ₂)		
10	-4	1000.6		
10	-2.5	1203.5		

i

30	3.5	1788.2

$$F(v,a) = \max\{I, c_0 + c_1v + c_2a + c_3v^2 + c_4va + c_5a^2 + c_6v^3 + c_7(v^2)a + c_8v(a^2) + c_9a^3\}$$

Figure 3: An emission model with low error: 10 year-old Light Commercial Trucks on 0% road grade.

Figure 4: An emission model with high error: 6 year-old transit buses on -25% road grade

Validation

- 1. Created ~1000 drive cycles
- Calculated emissions of all 1000 drive cycles using MOVES (ground truth)
- For each drive cycle, ran each inst.
 model on the drive cycle and summed
 up the second by second instantaneous
 emissions

Validation: Error

Mean

Outcomes

- Created a set of 1100 models encompassing:
 - 5 vehicle types
 - 20 vehicle ages
 - 11 road grades
- Models with second-by-second emission output: f(s,a)
- API Programmatic format
 - A python script: choosing model + passing in a speed and acceleration value

Diverse

Instantaneous

Programmatic