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Abstract

Transportation plays a major role in global CO; emission levels, a factor that
directly connects with climate change. Roadway interventions that reduce CO2
emission levels have thus become a timely requirement. An integral need in
assessing the impact of such roadway interventions is access to industry-standard
programmatic and instantaneous emission models with various emission conditions
such as fuel types, vehicle types, cities of interest, etc. However, currently, there is a
lack of well-calibrated emission models with all these properties. Addressing these
limitations, this paper presents 1100 programmatic and instantaneous vehicular
CO- emission models with varying fuel types, vehicle types, road grades, vehicle
ages, and cities of interest. We hope the presented emission models will facilitate
future research in tackling transportation-related climate impact. The released
version of the emission models can be found herel[]

1 Introduction

Global CO; emission levels are steadily increasing and are considered a primary driving factor of
climate change. Out of all sectors transportation is responsible for the largest share with 37% [l]].
Efforts have been taken to reduce transportation-related emission levels including better roadways
[2], optimizing traffic signals [7], electrical vehicles [20], among others. Emerging technologies
like connected autonomous vehicles (CAVs) provide a substantial opportunity in optimizing driving
patterns [[10} 14} 6] and traffic flow [21} [17]], which, in turn, can significantly reduce COs emission.

An integral requirement in assessing the impact of these interventions is the access to calibrated CO2
emission models. Emerging learning-based interventions like eco-driving [6]], inherently require
programmatic and instantaneous emission models that can be used to define a reward function in
training agents [6]. For an emission model to be programmatic, it should have an API or scripted-based
queries and results can be returned quickly. In addition, instantaneous means being able to calculate
the emissions for an action taken within a single time step. Similarly, modern control methods
like trajectory optimizations [12] share similar requirements in formulating objective functions. In
general, any roadway intervention that changes the underlying vehicular dynamics should be properly
assessed for climate impact using carefully calibrated CO5 emission models under diverse conditions.
Industry-standard CO- emission models are neither instantaneous nor programmatic [16}[3] and often
limited to specific types of vehicles, one fuel type, and make simplifying assumptions such as zero
road grades [8} 4]]. Such limitations significantly hinder the progress of research and could even
advance the field in a vacuum due to the lack of realism and variety [5, [19].

In this paper, we address these limitations with the hope of facilitating future research in roadway
interventions for tackling climate change. In particular, we introduce a spectrum of programmatic and
instantaneous vehicular CO5 emission models that contains 1100 individual CO5 emission models

“These authors contributed equally to this work.
“To preserve the anonymity of the submission, an anonymized version of the released emission model data
set is presented with this submission.

Tackling Climate Change with Machine Learning: workshop at NeurIPS 2022.


https://anonymous.4open.science/r/inst-emission-modeling-C34B

under varying fuel types, vehicle types, road grades, vehicle ages, and cities of interest. We use the
Motor Vehicle Emission Simulator (MOVES) [[16] by the US Environmental Protection Agency as
our emission data source and produce CO2 emission models by an isolation methodology, MOVES
processing and function fitting. We validate the accuracy of our emission models by using MOVES
as ground truth. We have publicly released our emission models as a dataset and hope future research
in roadway interventions for tackling climate change will benefit from it.

2 Related Work

A summary of related work is presented in Table[T] All the related works lack at least one feature
compared to ours. The HBEFA model is the closest feature-wise, but it is designed to work specifically
with SUMO traffic simulator and is also known to be less accurate, especially when vehicles decelerate.
MOVES, on the other hand, has a comprehensive feature set. However, it is neither instantaneous nor
programmatic and has high computational overhead making it undesirable for modern learning-based
roadway interventions. However, since it is calibrated and well-known, we use MOVES data to create
equivalent yet lightweight surrogate emission models that preserve accuracy.

Table 1: A comparison of five well-known emission models with our models across 6 features. The

’v"* indicates that the feature is present, an ’x’ that the feature is absent, and a ’*’ when the feature is
present but with less options than within our models.
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MOVES [16] v v v v X X
FastSIM [3] v v v v X v
HBEFA [8] v v v v v X
PHEM [4] * v * X X X
MOVESTAR [18] X X * X v v
Ours v v v v v v
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Figure 1: Overall methodology for learning surrogate emission models from MOVES

While being the industry standard for vehicle emission models, MOVES uses a retrospective approach
that calculates the emission of a complete and already defined trajectory with a high computing
overhead. Here, we present our method that translates the MOVES model to a fast, programmatic
and instantaneous learning-based equivalent. Our overall method is depicted in Figure[T]

Based on a careful analysis of MOVES’s internal computations (see Appendix for more details), we
start our pipeline by constructing a collection of trajectories designed to extract emission data from
MOVES. We define a trajectory 7 = {v; ... v, } where v; is the velocity of a vehicle at time step 4.
Next, a set of trajectory tuples of the form < 73, 7. > is generated with a baseline trajectory 75, and
a controlled trajectory 7. , of lengths n and n + 1 respectively. As in step 1 of Figure[T]illustrates,
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Figure 2: Emission error distribution: overall error in[2aland as grouped by trajectory type in

the baseline 7;, is set to a constant speed, and the controlled trajectory 7, appends an extra modeled
action (i.e. an acceleration at a certain speed) maintaining [0 : n] = 7.[0 : n].

Next, every trajectory tuple < 73, 7. > along with all the generated input files that characterize the
models’ parameters (i.e. temperature, humidity, vehicle age distribution, fuel distribution and age
distribution) are fed into MOVES (step 2 of Figure|[I]) to model per trajectory total CO, emissions.
Let emission of controlled trajectory and baseline trajectory of a given trajectory tuple be e. and e,
respectively. In step 3, the instantaneous emission is extracted by computing emission difference
Ae = e, — ep. By repeating step 2 and 3 for all trajectory tuples, we create final emission dataset that
conatins a mapping from speed and acceleration to instantaneous emissions.

Finally, we perform function fitting to generate our final emission models as in Step 4. Inspired by the
Simulation of Urban Mobility [[L1] parameters and Lee et al.[9], we define a third order polynomial
E(a,v) with all possible terms of instantaneous velocity v and instantaneous acceleration a as our
surrogate model for function fitting. Like other models [[13], we bound the outputs of E(v,a) to
incorporate the idling (v = 0, a = 0) emission I and prevent negative emission from extrapolations or
fitting errors. Equation [ shows the structure of the final emission model.

F(v,a) = maz{l,co+c1v+coa+ e3v? + cqva + c5a® + cgv® + 07(v2)a + 68v(a2) + 09a3} €

4 Validation

In this section, we evaluate the accuracy of the 1100 learned emission models by comparing the
emission for vehicle trajectories against the ground truth from MOVES.

In evaluating emission models, we generate 1132 vehicle velocity trajectories T = {71,...,Ti00}
both randomly and as seen in previous works. In particular trajectories from 5 subsets: 11,715, ... T5
to capture a range of driving behaviors: A). random trajectories by sampling accelerations from a
normal distribution N (0, 1), B). following sinusoidal generative model C). naturalistic human driving
trajectories by simulating human drivers using Intelligent Driver Model (IDM) [15]], D). eco-driving
trajectories as seen in [6] and E) by following human compatible driving policies from [14]].

Given an emission model 7 and a vehicle trajectory 7, we define per unit length absolute percent

. T T T — ‘E:Z-iE;QOVEsl T T
emission error denoted by e] . We define e as e] = TET e 100%, where ET and £}/ 6y pg

are the total emissions resulting from trajectory 7 measured based on emission model ¢ and MOVES
respectively. 7; is the length of the trajectory 7 measured in seconds. Given the set of vehicle

trajectories T, average emission error eq,,, of a given emission model ¢ can therefore be defined as

el o =E{e} 7. In Figure and Figure [2b| we analyze the error of our learned emission models.

avg
As seen in Figure 2a] the distribution of emission errors is centered closely to O with a mean value of

0.2268% error/second. We further analyze this by comparing an emission model from the highest
error bin and one from the lowest error bin in Figure #b]and Figure [3b]respectively. These two fitted
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(a) Ground truth emissions data (b) Fitted emission model (c) Function fitting error

Figure 3: An emission model with low error: 10 year-old Light Commercial Trucks on 0% road
grade.
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Figure 4: An emission model with high error: 6 year-old transit buses on -25% road grade

models show different shapes with one levelling off at large values of speed and acceleration. Worth
noting, a large and middle section in Figure #b] was truncated to the lower bound: idle emission value,
showing a fitting improvement opportunity that could be addressed with alternative fitting methods.
Finally, the residuals don’t show consistent trends across the different models.

The aggregated emission error per trajectory (Figure 2b) shows no statistically significant difference
in the performance of the models across types of trajectories. This indicates that the models are able
to behave consistently across different driving behaviors. The large standard deviation across all
5 categories indicates a high amount of variability for model performance within overall of model
performance, independent of which trajectory type.

5 Conclusion

In this paper, we presented 1100 CO- emission models under varying fuel types, vehicle types, road
grades, vehicle ages, and cities of interest. Our emission models are instantaneous and programmatic
facilitating integration with state-of-the-art micro-simulators for impact assessments of roadway
interventions in terms of climate impact. Future work of this study include extending the emission
model datasets with more attributes such as weather conditions and seasonal variations. We hope
the released emission models will facilitate impact assessments of future research in roadway

interventions for tackling climate change.
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Appendix

.1 Details on the Methodology

MOVES is the industry-standard emission model, provided, maintained and enforced by EPA’s to be
used for State Implementation Plans (SIP) and transportation conformity analyses by government
offices [cite]. It’s methodology and scope are the "state-of-the-science"[cite] and given that its results
are the reference used for decision making, there’s a natural interests in using it as the validated model
to compute the emission of all sorts of transportation analyses. Unfortunately, ML-based approaches
like eco-driving can’t incorporate MOVES as part of their training pipeline

The first part of this work consisted in defining our space and determining an accurate way to get
the data that we want of of MOVES. We explored MOVES computations, approaches, assumptions,
and limitations through multiple sensitivity analyses, EPA’s workshops, and communication with
MOVES developers. Key findings include the linear scaling of emission with respect to volume,
implying that MOVES doesn’t model or account for congestion. Additionally, we found MOVES
to be deterministic and that the region selection informs parameters like weather conditions and
fleet characterization (i.e. Age, fuel, and type of vehicle distributions), which can all be overwritten
manually to model a general case.

Out of the multiple input parameters that equate to an emission value, we chose speed and acceleration
to be the model variables, and Vehicle type, fuel, vehicle age, weather conditions and road grade to
be model parameters, for which we get a model per combination.

We generate, according to our space sampling, approach and resolution, millions of designed trajecto-
ries are modeled using MOVES, characterized by drive cycles (second-by-second vehicle speed) and
scenario parameters. By using links (a segment of road defined by the user with specific properties)
as independent experiments within a single run and MOVES’s command line we are able us automate
the process and run large batches of MOVES runs, making the data generation significantly faster but
still in the order or weeks for a well-equipped personal computer.

In the third part of the pipeline lies the core component of our methodology, the extraction of the
the instantaneous emission. In essence, we isolate the emission from a single second of a vehicle
with a given speed and acceleration by comparing a designed trajectory to a baseline. Internally,
MOVES uses finite differences to calculate the acceleration from a given driving cycle. Given that
this calculation only looks one step backward, the emission from a unique second is independent to
the shape of the driving cycle before or after, and can be extracted by modeling and analyzing a single
step in the driving cycle. A number of MOVES considerations are taken in account to construct this
approach.

For equating the difference, we need the baseline to be one second shorter than the controlled
trajectory, however, the length of the driving cycle [seconds] can’t be directly provided into MOVES.
As a workaround we used the limit of the time window MOVES has for project scale analyses.
Basically, we forced the driving cycle to be modeled as one hour and then scale back the emission to
the desired length, considering the trajectory exactly one second more than the baseline. This scaling
is possible because MOVES uses the driving cycle to compute a operating mode distribution, which
is a percentage of time at each emission bin and then multiplies that by the total length of the driving
cycle, which means it scales linearly with time and can be manipulated.

The final step to generate the emission models entails fitting the obtained results to a continuous
function that can be directly used as a substitute for MOVES. We used a polynomial regression
method from the machine learning python package: scikit learn, to fit two variable (speed and
acceleration) degree three polynomials to the data. With a 80-20 split, we test the train and testing
accuracy of each model.

.2 Choice of Machine Learning Model

For our fitting step, we fitted our data using polynomial regression with a third-order polynomial. We
chose to use a polynomial function given the requirements of potential downstream applications we
expect our model to be used for. Within control applications using reinforcement learning for example,
it is important that the function is continuous and differentiable to determine the adjustments that
need to be made to the behavior of an agent to achieve an optimal policy. Alternatives like decision



trees or piecewise functions that capture the discretized nature of MOVES would not be compatible
with downstream applications. On the other hand, the selection a lower 3rd order polynomial rather
than other higher order polynomials is based on maintaining interpretability, and not incorporating
unnecessary non-linearity and complexity to provide non-significant accuracy improvements: A 4,
5 and 6 order polynomials were tested, and even though the fitting accuracy increased by around
3x, 3.5x and 4x respectively, the validation performance didn’t improve by more than 10 percent,
showing overfitting.
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