Aboveground Carbon Biomass Estimate with Physics-informed Deep Network Juan Nathaniel (jn2808@columbia.edu) ## Why Biomass? Key parameter in many climate processes (eg.carbon flux, sequestration, land productivity) Monitor ecosystem risks (eg. wildfire, land-use changes) Helps achieve carbon neutral goals (eg. carbon credit, reforestation) Paper: https://arxiv.org/abs/2210.13752 ## **Current Challenges** #### Dense yet local data Field plots: expensive to measure accurate AGB (estimated with allometric equation that relates diameter, tree species, etc) #### Global yet sparse data **GEDI Mission:** state-of-the-art space-borne LiDAR system Paper: https://arxiv.org/abs/2210.13752 Can we **interpolate** globally available AGB estimates, **validated** with accurate yet limited field observations, using **Physically-informed model?** ### Our Approach #### Results #### **Final Estimate** ## Model Performance & Ablation Study | Model | Inputs | Testing | Validation | |------------------|-----------|------------------|------------------| | Linear Regressor | SIF/S1/S2 | 66.07 ± 0.06 | 81.95 ± 0.01 | | | S1/S2 | 66.46 ± 0.10 | 84.33 ± 0.00 | | | S2-only | 67.10 ± 0.11 | 90.99 ± 0.03 | | XGBoost | SIF/S1/S2 | 56.66 ± 0.06 | 53.37 ± 0.05 | | | S1/S2 | 57.35 ± 0.05 | 54.74 ± 0.03 | | | S2-only | 57.82 ± 0.02 | 54.81 ± 0.26 | | RF | SIF/S1/S2 | 57.16 ± 0.05 | 52.30 ± 0.03 | | | S1/S2 | 58.05 ± 0.03 | 54.72 ± 0.06 | | | S2-only | 58.12 ± 0.02 | 54.88 ± 0.18 | | UNet | SIF/S1/S2 | 48.83 ± 0.19 | 37.93 ± 1.36 | | | S1/S2 | 49.30 ± 0.18 | 41.99 ± 3.23 | | | S2-only | 50.35 ± 0.43 | 45.93 ± 2.25 | Paper: https://arxiv.org/abs/2210.13752 #### **Evaluation** #### **Internal Consistency** Agrees with literature: highest in summer temperate and lowest in (semi)-arid regions #### Residuals Overestimation for low AGB and underestimation for high AGB: difficulty to capture non-vegetation and extremely dense vegetation Paper: https://arxiv.org/abs/2210.13752 ## Application - Wildfire Monitoring Case: Caldor Fire in California 2021 - Estimate AGB after and before the fire event - Compare with Normalized Burn Ratio (NBR) that measured fire severity - Close relationship between impact (AGB loss) and intensity (NBR difference) Paper: https://arxiv.org/abs/2210.13752