Aboveground Carbon Biomass Estimate with Physics-informed Deep Network

Juan Nathaniel (jn2808@columbia.edu)

Why Biomass?

Key parameter in many climate processes (eg.carbon flux, sequestration, land productivity)

Monitor ecosystem risks (eg. wildfire, land-use changes)

Helps achieve carbon neutral goals (eg. carbon credit, reforestation)

Paper: https://arxiv.org/abs/2210.13752

Current Challenges

Dense yet local data

Field plots: expensive to measure accurate AGB (estimated with allometric equation that relates diameter, tree species, etc)

Global yet sparse data

GEDI Mission: state-of-the-art space-borne LiDAR system

Paper: https://arxiv.org/abs/2210.13752

Can we **interpolate** globally available AGB estimates, **validated** with accurate yet limited field observations, using **Physically-informed model?**

Our Approach

Results

Final Estimate

Model Performance & Ablation Study

Model	Inputs	Testing	Validation
Linear Regressor	SIF/S1/S2	66.07 ± 0.06	81.95 ± 0.01
	S1/S2	66.46 ± 0.10	84.33 ± 0.00
	S2-only	67.10 ± 0.11	90.99 ± 0.03
XGBoost	SIF/S1/S2	56.66 ± 0.06	53.37 ± 0.05
	S1/S2	57.35 ± 0.05	54.74 ± 0.03
	S2-only	57.82 ± 0.02	54.81 ± 0.26
RF	SIF/S1/S2	57.16 ± 0.05	52.30 ± 0.03
	S1/S2	58.05 ± 0.03	54.72 ± 0.06
	S2-only	58.12 ± 0.02	54.88 ± 0.18
UNet	SIF/S1/S2	48.83 ± 0.19	37.93 ± 1.36
	S1/S2	49.30 ± 0.18	41.99 ± 3.23
	S2-only	50.35 ± 0.43	45.93 ± 2.25

Paper: https://arxiv.org/abs/2210.13752

Evaluation

Internal Consistency

Agrees with literature: highest in summer temperate and lowest in (semi)-arid regions

Residuals

Overestimation for low AGB and underestimation for high AGB: difficulty to capture non-vegetation and extremely dense vegetation

Paper: https://arxiv.org/abs/2210.13752

Application - Wildfire Monitoring

Case: Caldor Fire in California 2021

- Estimate AGB after and before the fire event
- Compare with Normalized Burn Ratio (NBR) that measured fire severity
- Close relationship between impact (AGB loss) and intensity (NBR difference)

Paper: https://arxiv.org/abs/2210.13752