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Introduction

• Fast and reliable weather prediction is crucial for 
mitigating the impact of extreme weather events

• Recently, neural network-based weather models show 
promising results
• Significant speedups over classical numerical models
• Competitive prediction skill at short lead times

• Can we produce good uncertainty estimates using 
such neural weather models?
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FourCastNet

• Goal: Given atmospheric state, predict atmospheric 
state 6 hours into the future

• Auto-regressive neural network 

• Transformer-based backbone
• Adaptive Fourier Neural Operator

• Trained on high-resolution (0.25°) ERA5 reanalysis 
data

• Achieves state-of-the-art performance and 
scalability at ~45000x speedup against traditional 
numerical models

• For details, see Pathak et al, 2022

Nvidia’s deep learning-based weather model
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Ensemble Forecasts

• How do we generate forecasts that contain information about predictive 
uncertainty?
• Produce ensemble forecasts – do not just predict one trajectory, but run N predictions
• Incorporate uncertainty about initial conditions and about the model

• Many heuristics for producing desired effects
• Singular vectors, breeding vectors for identifying fast-growing perturbations
• Perturbations to the physical model based on prior, domain-specific information

• But it is hard to incorporate such hand-crafted heuristics into a neural network-
based forecasting model
• No disentangled representation of individual physical processes

• Can we design ensembling strategies that enable FourCastNet to produce well-
calibrated ensembles?
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Ensemble Forecasts

• How do we generate forecasts that contain information about predictive 
uncertainty?
• Produce ensemble forecasts – do not just predict one trajectory, but run N predictions
• Incorporate uncertainty about initial conditions and about the model

• Many heuristics for producing desired effects
• Singular vectors, breeding vectors for identifying fast-growing perturbations
• Perturbations to the physical model based on prior, domain-specific information

• But it is hard to incorporate such hand-crafted heuristics into a neural network-
based forecasting model
• No disentangled representation of individual physical processes

• Can we design ensembling strategies that enable FourCastNet to produce well-
calibrated ensembles?
• Yes!
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Initial Condition Uncertainty
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Baseline: Gaussian Perturbations

• Perturb initial condition using uncorrelated Gaussian 
noise
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Baseline: Gaussian Perturbations

• Perturb initial condition using uncorrelated Gaussian 
noise

• Hypothesis: FourCastNet acts like a physical system, 
being more sensitive to perturbations at larger length-
scales
• Uncorrelated Gaussian noise quickly disperses and the 

ensemble collapses
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Correlated Perturbations

• To investigate our hypothesis, we add spatial 
correlation to the initial condition perturbations
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Correlated Perturbations

• To investigate our hypothesis, we add spatial 
correlation to the initial condition perturbations
• Sample uncorrelated gaussian noise
• Transform to frequency domain
• Rescale frequencies in 2d frequency domain to be 

proportional to 

• Transform back to spatial domain and apply perturbation
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Model Uncertainty
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Initial Condition Uncertainty is 
not enough

• Numerical models routinely include perturbations to 
the weather model itself, to capture uncertainty 
arising from the parametrisation of the model instead 
of the initial condition

• How to incorporate this intuition into a deep learning 
based setup?
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Initial Condition Uncertainty is 
not enough

• Numerical models routinely include perturbations to 
the weather model itself, to capture uncertainty 
arising from the parametrisation of the model instead 
of the initial condition

• How to incorporate this intuition into a deep learning 
based setup?
• Can not use heuristcs for perturbing parametrisations of 

physical processes based on prior knowledge directly!
• Use methods from Bayesian deep learning to quantify 

uncertainty over weights, then sample different models 
during inference
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Stochastic Weight Averaging -
Gaussian

• Learn a posterior distribution over neural network 
weights given training data
• During inference, sample N different models from this 

posterior distribution and use them to process different 
trajectories

• How to approximate this posterior?
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Stochastic Weight Averaging -
Gaussian

• Learn a posterior distribution over neural network 
weights given training data
• During inference, sample N different models from this 

posterior distribution and use them to process different 
trajectories

• How to approximate this posterior?

• SWA-G: Approximate posterior as a Gaussian with a 
combination of low-rank and diagonal covariance

• Train model to convergence using regular methods
• Keep training using SGD with a constant learning rate 

and periodically save weight checkpoints

Mean of model checkpoints
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Stochastic Weight Averaging -
Gaussian

• Learn a posterior distribution over neural network 
weights given training data
• During inference, sample N different models from this 

posterior distribution and use them to process different 
trajectories

• How to approximate this posterior?

• SWA-G: Approximate posterior as a Gaussian with a 
combination of low-rank and diagonal covariance

• Train model to convergence using regular methods
• Keep training using SGD with a constant learning rate 

and periodically save weight checkpoints

Per-weight variance in the 
checkpoints
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Stochastic Weight Averaging -
Gaussian

• Learn a posterior distribution over neural network 
weights given training data
• During inference, sample N different models from this 

posterior distribution and use them to process different 
trajectories

• How to approximate this posterior?

• SWA-G: Approximate posterior as a Gaussian with a 
combination of low-rank and diagonal covariance

• Train model to convergence using regular methods
• Keep training using SGD with a constant learning rate 

and periodically save weight checkpoints

Matrix with columns 
corresponding to 

deviations of last K 
checkpoints to from 

the sample mean
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Stochastic Weight Averaging -
Gaussian

• Learn a posterior distribution over neural network 
weights given training data
• During inference, sample N different models from this 

posterior distribution and use them to process different 
trajectories

• How to approximate this posterior?

• SWA-G: Approximate posterior as a Gaussian with a 
combination of low-rank and diagonal covariance

• Train model to convergence using regular methods
• Keep training using SGD with a constant learning rate 

and periodically save weight checkpoints
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Outlook
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Possible Directions for Future Work

• Apply classical methods from numerical weather prediction 
• Singular vectors, breeding vectors
• Comes with its own set of challenges, not clear that this is exactly what we want…
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Possible Directions for Future Work

• Apply classical methods from numerical weather prediction 
• Singular vectors, breeding vectors
• Comes with its own set of challenges, not clear that this is exactly what we want…

• Actively lean into the generative modeling formulation (e.g. using diffusion models)
• Can this scale to large domains like ours, or even larger domains in future high-resolution models?
• In principle, sure. But far from trivial to get this right!

• Improve the Bayesian approach
• Applying more expressive methods for approximating the posterior might be required
• Even if SWA-G is enough, there might be heuristics that can be applied to use the information about the posterior to sample 

better ensembles of models

• Thank you for your attention!


