

Nowformer: A Locally Enhanced Temporal Learner for Precipitation Nowcasting

Jinyoung Park, Inyoung Lee, Minseok Son, Seungju Cho, and Changick Kim

Korea Advanced Institute of Science and Technology (KAIST)

Email: jinyoungpark@kaist.ac.kr

Precipitation Nowcasting

• Climate change has induced heavy downpours in many parts of the globe, causing significant damage to human society. [1,2]

- Precipitation nowcasting
 - Predicts precipitation changes within 6 hours

^[1] Mark Veillette, Siddharth Samsi, and Chris Mattioli. Sevir: A storm event imagery dataset for deep learning applications in radar and satellite meteorology. Advances in Neural Information Processing Systems, 33:22009–22019, 2020

^[2] Cong Bai, Feng Sun, Jinglin Zhang, Yi Song, and Shengyong Chen. Rainformer: Features extraction balanced network for radar-based precipitation nowcasting. IF A Geoscience and Remote Sensing Letters, 19:1–5, 2022.

Motivation

Vertically Integrated Liquid

2019-04-30T18:50:00

Precipitation data has unique pattern.

- ✓ fluid mass spreading (Global Dynamics)
- ✓ each part of fluid has an individual life-cycle (Local Dynamics)

Propose a transformer-based nowcasting model that extract <u>global and local</u> <u>dynamics reflecting meteorological</u> characteristics.

Our Method

Nowformer

Experimental Results

- Results on Sevir strorm
 - Quantitative results

Table 1: Comparison of our methods with baselines on several metrics.

		Metrics						
Model	Param. (M)	GFLOPs	CSI-74	CSI-133	POD-74	POD-133	MAE↓	$\mid \text{MSE}(10^{-2}) \downarrow$
Persistence	_	_	0.4766	0.4500	0.6072	0.5814	23.60	35.81
UNet [22]	4.14	4.79	0.6201	0.5820	0.7013	0.6547	21.67	24.48
Rainformer 5	212.40	50.89	0.6340	0.6055	0.7559	0.7209	20.57	23.79
SimVP 14	14.03	74.01	0.6507	0.6207	0.7583	0.7231	19.65	23.67
TAU [13]	11.25	55.55	0.6453	0.6152	0.7543	0.7180	19.32	22.20
Nowformer w/ TAUlocal	10.78	55.56	0.6457	0.6183	0.7861	0.7461	19.95	21.30
Nowformer w/ gridP.	10.53	55.56	0.6551	0.6309	0.8091	0.7786	20.37	22.51
Nowformer w/ ldP.	10.53	55.56	0.6592	0.6331	0.7881	0.7567	18.91	21.22

Experimental Results

- Results on Sevir strorm
 - Quantitative results

Figure 2: Performance over lead times.

Application context

- ✓ Easy to apply wherever data exists
 - Do not utilize complex physical formulas or dynamic models
- ✓ Scalability
 - Our methods can utilize data from satellites, various sensors, weather stations, etc.
 - it could solve more various tasks related to climate change

Thank you

Email: jinyoungpark@kaist.ac.kr

