Adaptive Bias Correction for Improved Subseasonal Forecasting

Soukayna Mouatadid¹

December 2022

Joint work with:

Paulo Orenstein², Genevieve Flaspohler³, Judah Cohen⁴, Miruna Oprescu⁵, Ernest Fraenkel³, Lester Mackey⁶

MACHINE LEARNING FOR SubS - MOTIVATION

• What: Predicting temperature and precipitation 2 – 6 weeks out

• Why:

Allocating water resources

Managing wildfires

Preparing for weather extremes

Energy pricing

Problem: Subseasonal forecasts have poor skill

MACHINE LEARNING FOR SubS - MOTIVATION

Source: https://iri.columbia.edu/news/qasubseasonal-prediction-project/

Concern:

- Community not making the best use of historical data in weather and climate forecasting
- Landscape dominated by dynamical models, purely physics-based models of atmospheric and oceanic evolution

MACHINE LEARNING FOR SubS - METHODS

Forecasting tasks

Target variables: - Average temperature

- Accumulated precipitation

Lead times: - Weeks 3-4 ahead

- Weeks 5-6 ahead

Geographical

region:

U.S., 1°x1° resolution

Loss function: RMSE

Dataset: Subseasonal Climate USA dataset

Models

Baseline models: - Climatology

- CFSv2

Persistence

Learning models: - Autoknn

- Informer

Localboosting

- MultiLLR

- N-BEATS

- Prophet

- Salient 2.0

Our toolkit: - Climatology++

- CFSv2++

- Persistence++

MODEL SKILL ON TEST DATA (2011 - 2020)

	% Improve	MENT OVER M	IEAN DEB. CF	Sv2 RMSE	Average % Skill					
	TEMPERATURE		PRECIP	ITATION	Темре	RATURE	PRECIPITATION			
MODEL	WEEKS 3-4	WEEKS 5-6	WEEKS 3-4	WEEKS 5-6	WEEKS 3-4	WEEKS 5-6	WEEKS 3-4	WEEKS 5-6		

CLIMATOLOGY++	2.06	4.83	8.86	8.57	18.61	18.87	15.04	14.99
CFSv2++	5.94	7.09	8.37	8.06	32.38	29.19	16.34	16.09
PERSISTENCE++	6.00	6.43	8.61	7.89	32.4	26.73	13.38	9.77

Want: An Ensemble of these 3 Learning Models

→ Adaptive Bias Correction (ABC)

MODEL SKILL ON TEST DATA (2011 - 2020)

Debiased CFSv2

Adaptive Bias Correction (ABC)

Adaptive Bias Correction (ABC): Hybrid Physics + Learning Model

- Takeaway:
- ABC can be used to correct any dynamical model
- including ECMWF (European Centre for Medium-Range Weather Forecasts), the leading subseasonal model

ABC Reduces Systematic Model Bias

Spatial distribution of model bias over the years 2018–2021

CFSv2 = U.S. operational dynamical model

ECMWF = leading subseasonal model

Explaining ABC Improvements

- Question: When is ABC most likely to improve upon its input model?
- Answer: Opportunistic ABC workflow
 - Based on the optimal credit assignment principle of Shapley (1953)
 - Measures impact of explanatory variables on individual forecasts using Cohort Shapley (Mase et al., 2019) and overall using Shapley effects (Song et al., 2016)
- Example: Explain ABC improvements for weeks 3-4 precipitation using
 - 500 hPa geopotential height (HGT)
 - Captures thermal structure, synoptic circulation
 - Madden Julian Oscillation (MJO) phase
 - 30-90 day oscillation in tropical atmosphere
 - 10 hPa geopotential height (HGT)
 - Captures polar vortex variability
 - Sea ice concentration (ICEC)
 - Impacts near-surface temperatures
 - Sea surface temperatures, multivariate ENSO index, target month, ...

Explaining ABC Improvements

Global importance of each variable in explaining skill improvement

Positive impact of HGT 500 PC1 on ABC skill improvement

- Most likely in decile 1: features positive Arctic Oscillation pattern
- Least likely in decile 9: features opposite phase Arctic Oscillation

Positive impact of MJO phase on ABC skill improvement

Forecast with largest MJO phase impact in deciles 2, 4, 5, 8

FORECASTS OF OPPORTUNITY

# High-impact variables	% Forecasts using ABC	High-im ABC	npact skill (%) Debiased	0.4		Deb.	ECMWI	on hi	gh-impa gh-impa on all c	act dat		
0 or more 1 or more	$100.00 \\ 95.93$	$20.94 \\ 20.99$	$15.28 \\ 14.84$	_ 0.3							///	
2 or more	80.62	22.29	13.12	Skil 0.3								
3 or more	58.61	23.56	12.00	0.2								
4 or more	31.82	24.72	8.18	012								
5 or more	14.59	26.51	8.35		i						•	
6 or more	6.46	29.72	10.55	0.1					·			
7 or more	2.15	45.00	17.53		0	i	2	3	4	5	6	
				_	Minimum number of high-impact features							S

- Idea: Apply ABC opportunistically when multiple explanatory variables are in high-impact state and use baseline debiased dynamical model otherwise
- Want: Effectively defining windows of opportunity based on variables observable at forecast issuance date
- Question: How many high-impact variables should we require when defining these windows of opportunity?

NEXT STEPS AND OPEN QUESTIONS

- Extend forecasting region to the entire globe
 - How should skill be measured? Overall? By region? Which regions?
- Complement deterministic forecasts with probabilistic forecasts
 - Forecast probability of each tercile (near normal, above normal, below normal)
 - Evaluate using Ranked Probability Skill Score

$$RPSS(\hat{\boldsymbol{p}}, \boldsymbol{p}) = 1 - \frac{(\hat{p}_1 - p_1)^2 + (\hat{p}_3 - p_3)^2}{(\frac{1}{3} - p_1)^2 + (\frac{1}{3} - p_3)^2}$$

How well do deterministic forecasting techniques translate into this setting?

Improved multimodel ensembling

- Standard in the field is equal weighted averaging
- But relative model performance varies over time and space
- Flaspohler et al. (2021) use optimistic online learning to deal with delayed feedback

LINKS

Adaptive Bias Correction for Improved Subseasonal Forecasting

Hybrid learning + physics model (Adaptive Bias Correction)

- Doubles or triples forecasting accuracy of operational models
- Paper: https://arxiv.org/abs/2209.10666
- Package: https://github.com/microsoft/subseasonal toolkit

Python implementation:

https://github.com/microsoft/subseasonal toolkit

Code:

Paper:

Subseasonal Climate USA dataset

- Public dataset for training / benchmarking forecasting models
- Updated daily on Azure
- Package: https://github.com/microsoft/subseasonal_data

Python package:

https://github.com/microsoft/subseasonal_data

Code:

