DL-Corrector-Remapper

A grid-free bias-correction deep learning methodology for data-driven high-resolution global weather forecasting

Tao Ge^{1,2}, Jaideep Pathak¹, Akshay Subramaniam¹, Karthik Kashinath¹ NeurIPS 2022 Workshop

Tackling Climate Change with Machine Learning

Introduction

DL-based mesh-gridded forecast model

Deep-learning(DL)-based mesh-gridded forecast model

Under the supervision of the reanalysis mesh-gridded data

FourCastNet

Backbone: Adaptive Fourier Neural Operator (AFNO)

Ground Truth: ERA5

Highlights:

- $10^4 \sim 10^5 \times \text{speedup compared to state-of-the-art}$ numerical weather predictions (NWP)
- Comparable accuracy to NWP

However.....

Mesh-gridded forecast: wind velocity

Motivation and Objective

Remap and bias-correct FourCastNet to Gold standard: Sparse, Non-Uniform Observational Data

- DL methods, like FourCastNet, have excellent skill in high-resolution data-driven global weather forecasting, based on held-out test set from ERA5 reanalysis mesh-gridded data as the ground truth.
- However, the mesh-gridded forecasts cannot be directly compared against the gold standard ground truth, i.e., raw sparse, non-uniform climate data from observations.
- Further, because the model is trained on reanalysis data, it is likely to have biases w.r.t. observations
- Goal: develop a model that can remap and correct mesh-gridded forecasts to arbitrary locations in space and time, under the supervision of sparse observations

Mesh-gridded weather forecast

Data from observational sites

Overall Structure - Grid-Free Network

$$\text{NUIDFT:} \frac{1}{\sqrt{WH}} \big\{ \cos(2\pi\ Q^T \cdot M^T) F_{real}^T - \sin(2\pi\ Q^T \cdot M^T) F_{img}^T \big\}$$

Q: query matrix

M: frequency basis

 F_{real} , F_{img} : real/img. Fourier coefficients

Model Training

Dataset

Input: Inference Data 2000-2018 from FourCastNet

Ground Truth: Global Observation Data 2000-2018

- 0.25° resolution
- 720x1440 image size
- 4 variables
- 10 timesteps (120 hours)
- 5 days lead time

Model Training

Dataset

Total instances:	27,360	2000-2018
Training (observed time):	23,040	2000-2015
Time gap	1,440	2016
Test (unobserved time):	1,440	2017
Total locations:	~22,000	(100%)
Training (observed locations):	~21,500	(98%)
Test (unobserved locations):	~500	(2%)

Observed locations by model

Unobserved locations

MODELING GOALS:

Unobserved time: produce reliable <u>future</u> forecasts

Unobserved locations:

Produce <u>observation-quality</u> data for locations that do not have observations. Much harder.

Model Training

Loss Function

$$LCC(A,B) = \frac{(\sum_{x} (A_{x} - A_{x} * K)(B_{x} - B_{x} * K))^{2}}{\sum_{x} (A_{x} - A_{x} * K)^{2} \sum_{n} (B_{x} - B_{x} * K)^{2}}$$

 λ hyperparameter

* convolution

K kernel

Results

Out-of-sample timestep, Observed Locations

Results

- Plots of mean square error (MSE) that are averaged over 80 instances across the year 2017 (out of sample).
- The proposed network improves over baselines for both observed and unobserved positions for out of sample timesteps
- Observed positions: the performance of DLCR is close to the performance of U-Net, and they both outperform the interpolation baseline.
- Unobserved positions: DLCR outperforms the interpolation baseline and U-Net, and it performs better on more complicated variables (wind velocity U), whereas the performance of the U-Net is even worse than the performance of the interpolation in estimating t2m.

DL-Corrector-Remapper

A grid-free bias-correction deep learning methodology for data-driven high-resolution global weather forecasting

https://arxiv.org/abs/2210.12293