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Introduction

• E.g., Hurricane Harvey’s flooding led to $125 
billion in losses, 30,000+ people displaced, 
and 200,000+ damaged homes and 
businesses
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Source: cnn.com

• Flooding: one of the most devastating hazards in the world.
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• Climate change ⇒ More precipitation ⇒ More flooding 



Introduction

• Popular approaches in practice simulate flooding by solving 
hydrodynamics (differential) equations (e.g., Saint-Venant equations) 
• Time consuming

• Not scalable  

• Our approach: FloodGNN flood prediction with graph neural 
networks. 
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Proposed Method
• A region 𝑅𝑔 is represented as a mesh.

𝑅𝑔
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Proposed Method
• Flooding events of a region 𝑅𝑔 given as a time series 𝑅𝑔
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Proposed Method
Graph representation from Mesh (GNN with mesh *).

• Cell 𝑖➔ node 𝑖

• Neighboring cells of 𝑖➔ edges 

𝑗 𝑖 𝑘

𝑙
𝑖

𝑗 𝑘

𝑙

From Mesh to 
Graph
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* Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W. Battaglia. Learning mesh-based simulation with graph network, ICLR 2021
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• Scalar feature 𝒔𝑖
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• 𝑒𝑖: ground elevation ; 𝑛𝑖: friction; 𝑑𝑖: distance to stream;  𝑤𝑖
𝑡: water-depth 
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Geometric vector perceptrons (GVP)* 
𝑠′, 𝑉′  𝐺𝑉𝑃 𝑠, 𝑉

Where 𝑠′, 𝑠 ∈ 𝑅𝑛; 𝑉′, 𝑉 ∈ 𝑅𝑚×𝑝

* Bowen Jing, Stephan Eismann, Patricia Suriana, Raphael John 
Lamarre Townshend, and Ron Dror. Learning from protein 
structure with geometric vector perceptrons, ICLR 2021
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Proposed Method
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Experiments

• FloodRNN: RNN-based method

• FloodGNN: Our proposed method

• FloodGNN-NoV: FloodGNN variant, velocities as scalar features.
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Experiments
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Predictions follow 
trend, even 
though with 
underestimation.

Experiments
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Conclusion and ongoing work

• FloodGNN: spatio-temporal GNN for flood prediction. 

• FloodGNN outperforms RNN-based model (no spatial relation).  

• FloodGNN performs better with velocities as vector features. 

• Future/ongoing work
• Rainfall data input

• Adaptive and irregular mesh representation 

• Physics-based constraints
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For more information
• Email: akn7@rice.edu
• Website: https://kanz76.github.io/
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