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Introduction

* Flooding: one of the most devastating hazards in the world.

® E.g., Hurricane Harvey’s flooding led to $125
billion in losses, 30,000+ people displaced,
and 200,000+ damaged homes and
businesses




Introduction

* Flooding: one of the most devastating hazards in the world.

* Climate change = More precipitation = More flooding

® E.g., Hurricane Harvey’s flooding led to $125
billion in losses, 30,000+ people displaced,
and 200,000+ damaged homes and
businesses
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Introduction

* Popular approaches in practice simulate flooding by solving
hydrodynamics (differential) equations (e.g., Saint-Venant equations)
* Time consuming
* Not scalable

* Qur approach: FloodGNN flood prediction with graph neural
networks.



Proposed Method

* Aregion R, is represented as a mesh.
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Proposed Method

* Flooding events of a region R given as a time series Ry, R5, R ..., R}




Proposed Method

Graph representation from Mesh (GNN with mesh *).
e Celli =» node i
* Neighboring cells of i=» edges
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From Mesh to
Graph

i

* Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W. Battaglia. Learning mesh-based simulation with graph network, ICLR 2021



For each node i
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* ¢;: ground elevation ; n;: friction; d;: distance to stream; w;: water-depth



For each node i
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Proposed Method
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Proposed Method
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Proposed Method
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Experiments
RMSE (lower better)
time-step £ I 2 3 2 5
FloodRNN 22 + .030 33 £+ .030 41 4+ .031 A48 + .034 55 + .038
FloodGNN-NoV 25 4 .030 A0 + 031 51 4+ .021 60 £ .007 66 £ .006
FloodGNN (Ours) .17 + .031 27 + .043 34 4+ .040 39 + .037 A4 + 036
I?? (higher better)
time-step £ I 2 3 3 5
FloodRNN 95 +.0160 87 +£.0390 .79 4+ .0540 .72 4+ .0620 .66 £ .0660
FloodGNN-NoV 95 +.0023 88 +.0069 80+ .0177 .714+.0356 .63+ .0571
FloodGNN (Ours) 98 & .0028 .93 4+ 0063 .89 £+ .0083 .85+ .0088 .80 + .0091

* FloodRNN: RNN-based method
* FloodGNN: Our proposed method
* FloodGNN-NoV: FloodGNN variant, velocities as scalar features.
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Experiments
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Figure 3: Comparison between real data (bottom row) and predictions from our model (top row).



Experiments

Predictions follow
trend, even
though with
underestimation.
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Figure 3: Comparison between real data (bottom row) and predictions from our model (top row).



Conclusion and ongoing work

* FloodGNN: spatio-temporal GNN for flood prediction.
* FloodGNN outperforms RNN-based model (no spatial relation).

* FloodGNN performs better with velocities as vector features.

* Future/ongoing work
* Rainfall data input
* Adaptive and irregular mesh representation
* Physics-based constraints

For more information
e Email: akn7@rice.edu
* Website: https://kanz76.github.io/
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