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Introduction

e Atmospheric chemistry models are important scientific
tools to understand the role of aerosols and ozone in
climate change and their effect on human health

e Atmospheric chemistry models = chemical equations +
reactions -> system of ODEs.

e |nput:initial concentrations for each species, initial
reaction rates, and environmental parameters.

e Output: time series of concentrations for each species.



A Challenge

e However, atmospheric chemistry models are computationally expensive to
run at global scale.

e Thechemistry numerical solver alone makes up 10% of the running time of
the UKESM1 Earth system model.

e As astep towards more efficient atmospheric chemistry models, we develop a
neural network emulator with a transformer-based architecture.

e Challenges of emulation:
o  Highdimensionality of data.
o  Longterm stability and error growth over time.
o  Chemically realistic output.



The MOZART-4 Box Model

e Thelongterm goal of our project is to develop an emulator for the numerical solver
in the UKCA atmospheric chemistry model, to replace it within the UKESM Earth
system model.

e Thesimulation we use for this work is MOZART-4, a tropospheric box model

(representing a single grid cell in a global model) of similar complexity to UKCA.
o  ~80species and ~200 reactions.

o Weuse BOXMOX to sample 5000 runs of MOZART-4 across many different initial

conditions and environmental parameters.
o  Eachrunis 3 days of simulation time.



Transformer Emulation

e Our model is a Temporal Fusion Transformer [1] — an attention-based
neural network capable of multi horizon time series modeling.

e Consists of a multi-head attention module and variable selection networks to
select the important features at each time step.

e Model outputs forecasts across different percentiles (10th, 50th, 90th, etc)
and minimises loss across all.

[1] Lim, Bryan, et al. "Temporal fusion transformers for interpretable multi-horizon time series forecasting."
International Journal of Forecasting 37.4 (2021)
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Results

Model MSE MAE  R?  Ojerror (ppm)
TFT 0.0274 0.1672 0.965 0.1238

Autoencoder [10] 0.0306 0.1980 0.958 0.1429
LSTM 0.0289 0.2884 0.971 0.2087
Random Forest 0.0297 0.2721 0.916 0.2925

e Accuracy: We find that the TFT outperforms comparable time series
forecasting baselines on the MOZART-4 dataset by ~8%, as well as
providing the extra quantile forecasts.

e Computational cost: creating the MOZART-4 dataset (5000 runs of 3
days each) took ~30 minutes to simulate on a single 32-core CPU, while
predictions for the same data using the TFT model took ~20 seconds on a
V100 GPU.

e Thisdemonstrates that on a computing cluster consisting of mostly CPUs
with a small number of GPUs, as is typical in climate modelling, this
emulator setup can potentially achieve orders of magnitude speedups for
global atmospheric chemistry modelling.



Results - 2
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Un-normalized kernel density estimates for Ozone and Methane (in parts per million), using the
TFT and LSTM baseline for emulation predictions.




Conclusions & Future Work

e Ourresults show that a transformer specialised for time-series modeling can supply
significantly improved predictions for a chemical box model emulation task over
baselines, and can greatly speed up the simulation at the cost of some accuracy.

e Directions for future work:
o  Physics-constrained NNs—incorporating information about the chemical system into the loss
function may enable more chemically plausible outputs
o  Partial emulation—emulate some parts of the chemical system and numerically solve others in
order to increase emulator accuracy while still providing significant speedups.
o  Global model emulation—incorporate our box model emulator into a global atmospheric chemistry
model.



