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Preparing for a New World of Climate Extremes
Climate risk is about computing very small probabilities

Climate change is worsening weather extremes

- Megadroughts

- Sea level rise

« Stronger hurricanes

« Extreme rainfall and flooding
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Preparing for a New World of Climate Extremes
Climate risk is about computing very small probabilities

Climate change is worsening weather extremes

Megadroughts

Sea level rise

Stronger hurricanes

Extreme rainfall and flooding

Risk assessment of extremes is challenging

Worst outcomes have low probability
Weather perils are interconnected

2020-
2039

@ !ncrease in losses
from sea level
rise alone

@ Increase in losses

from sea level rise &
stronger hurricanes
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Projected increases in U.S. property losses due to sea level rise
and stronger hurricanes (Houser et al., 2015)
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Physics-Based GCM + Observations = ML opportunity

Simple GCM simulation
(fast but biased)
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Physics-Based GCM + Observations = ML opportunity
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Simple GCM simulation
(fast but biased)
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Physics-Based GCM + Observations = ML opportunity
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Simple GCM simulation Step 1:
(fast but biased) Bias-correction
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Physics-Based GCM + Observations = ML opportunity
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Simple GCM simulation Step 1: Coarse-scale
(fast but biased) Bias-correction debiased GCM
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Physics-Based GCM + Observations = ML opportunity
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Simple GCM simulation Step 1: Coarse-scale Step 2:
(fast but biased) Bias-correction debiased GCM Super-resolution
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Physics-Based GCM + Observations = ML opportunity
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Simple GCM simulation Step 1: Coarse-scale Step 2: High-resolution
(fast but biased) Bias-correction debiased GCM Super-resolution debiased simulation
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Atmosphere Dynamics Involve Many Spatial Scales
Compact representation of atmospheric processes is heeded

Discrete spherical wavelet frame is used to » reduces dimensionality
represent phenomena on a hierarchy of levels > allows training of local models

Wavelet level 2
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Multi-Scale Deep Learning for Weather Extremes

Bias-correction

Coarse-scale biased
GCM simulation
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Wavelet transform

Coarse-scale biased
wavelet coefficients

LSTM-based
Neural Networks

Coarse-scale debiased
wavelet coefficients

Inverse wavelet transform

Coarse-scale debiased
simulation
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Multi-Scale Deep Learning for Weather Extremes
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Wavelet transform

Wavelet transform

Coarse-scale biased
wavelet coefficients
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Coarse-scale
wavelet coefficients

LSTM-based
Neural Networks

TCN-based
Neural Networks

Coarse-scale debiased
wavelet coefficients

Inverse wavelet transform

Coarse-scale debiased
simulation

Fine-scale
wavelet coefficients

Inverse wavelet transform

Fine-scale
reanalysis
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Multi-Scale Deep Learning for Weather Extremes
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Wavelet transform

Wavelet transform

Coarse-scale biased
wavelet coefficients
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Coarse-scale
wavelet coefficients

Inverse wavelet transform

Coarse-scale debiased
simulation
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Fine-scale
wavelet coefficients

Inverse wavelet transform

Full-scale debiased simulation
with realistic statistics

Fine-scale
reanalysis
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Statistical Loss Functions
How to make ML predictions statistically consistent with observations

ML output Reanalysis
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Statistical Loss Functions
How to make ML predictions statistically consistent with observations

ML output Reanalysis
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Statistical Loss Functions
How to make ML predictions statistically consistent with observations

ML output Reanalysis
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Quantile loss heavy tails and extremes L(y,y") = MSE(Q,, Q")
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Statistical Loss Functions
How to make ML predictions statistically consistent with observations

ML output Reanalysis
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Quantile loss heavy tails and extremes L(y,y") = MSE(Q,, Q") cross-spectrum
Cross-spectrum loss  space-time coherency L(y,y") = MSE(Re[Fy,yn], Re[l“y*,y;l])

+ MSE(Im([I,, ], Im([T)- - ])
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Statistical Loss Functions
How to make ML predictions statistically consistent with observations

ML output Reanalysis
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Cross-spectrum loss  space-time coherency L(»y,y") = MSE(Re[Fy,yn]: Re[Fy*,y;;])
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Debiased, High-Resolution Simulation over Europe

 Training protocol described in preprint (arXiv:2210.12137)
» Fronts and waves present in the full-scale ML simulation

 Statistics and correlations consistent with reanalysis

STEP 1 STEP 2
ML Debiased

Debiasing Downscaling

Biased GCM

\IXIXI/
N\IXIXI/

Vorticity close to ocean surface
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Log PSD
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Debiased, High-Resolution Simulation over Europe

Training protocol described in preprint (arXiv:2210.12137)

Fronts and waves present in the full-scale ML simulation

Statistics and correlations consistent with reanalysis

London

Zurich

10!
Frequency [day 1]
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Vorticity close to ocean surface

GCM

L5 ERA5
L5 ML
L6 ERAS
L6 ML
L7 ERAS
L7 ML
L8 ERA5
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Debiased, High-Resolution Simulation over Europe

« Training protocol described

in preprint (arXiv:2210.12137)

» Fronts and waves present in the full-scale ML simulation

 Statistics and correlations consistent with reanalysis

London

Zurich Paris

Vorticity [s7] 107*
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Vorticity [s7] 107* Vorticity [s~%] 10~*

Vorticity close to ocean surface
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— GCM
—— L5 ERAS
=== 1.5 ML
—— L6 ERAS
=== 16 ML
- L7 ERAS
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Conclusions
More details available in our preprint (arXiv:2210.12137)

Key ingredients:

< compact, multi-scale representation of atmospheric processes
- statistical loss functions for extremes and space-time coherency
« divide-and-conquer strategy for efficient training of regional models
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Key ingredients:

< compact, multi-scale representation of atmospheric processes
- statistical loss functions for extremes and space-time coherency
« divide-and-conquer strategy for efficient training of regional models

> Better, faster (> 10x) quantification of weather extremes
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Conclusions
More details available in our preprint (arXiv:2210.12137)

Key ingredients:

< compact, multi-scale representation of atmospheric processes
- statistical loss functions for extremes and space-time coherency
« divide-and-conquer strategy for efficient training of regional models

> Better, faster (> 10x) quantification of weather extremes

Current thrusts:

 incorporate more physics
« benchmark different seg-to-seq models
« validate with risk-oriented metrics (e.g., storm severity)
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