

A Multi-Scale Deep Learning Framework for Projecting Weather Extremes

Antoine Blanchard Nishant Parashar Boyko Dodov Christian Lessig (OVGU) Themis Sapsis (MIT)

Tackling Climate Change with Machine Learning @ NeurIPS 2022

Preparing for a New World of Climate Extremes

Climate risk is about computing very small probabilities

Climate change is worsening weather extremes

- Megadroughts
- Sea level rise
- Stronger hurricanes
- Extreme rainfall and flooding
- •

Source: NOAA

Preparing for a New World of Climate Extremes

Climate risk is about computing very small probabilities

Climate change is worsening weather extremes

- Megadroughts
- Sea level rise
- Stronger hurricanes
- Extreme rainfall and flooding
- •

Risk assessment of extremes is challenging

- Worst outcomes have <u>low probability</u>
- Weather perils are interconnected

Projected increases in U.S. property losses due to sea level rise and stronger hurricanes (Houser et al., 2015)

Atmosphere Dynamics Involve Many Spatial Scales

Compact representation of atmospheric processes is needed

Discrete spherical wavelet frame is used to represent phenomena on a hierarchy of levels

- reduces dimensionality
- allows training of local models

Multi-Scale Deep Learning for Weather Extremes

Multi-Scale Deep Learning for Weather Extremes

Multi-Scale Deep Learning for Weather Extremes

How to make ML predictions statistically consistent with observations

How to make ML predictions statistically consistent with observations

How to make ML predictions statistically consistent with observations

Quantile loss

heavy tails and extremes

$$\mathcal{L}(\mathbf{y},\mathbf{y}^*) = \mathrm{MSE}(Q_{\mathbf{y}},Q_{\mathbf{y}^*})$$
 quantiles

How to make ML predictions statistically consistent with observations

Quantile loss

heavy tails and extremes

Cross-spectrum loss

space-time coherency

$$\mathcal{L}(\boldsymbol{y}, \boldsymbol{y}^*) = \text{MSE}(Q_{\boldsymbol{y}}, Q_{\boldsymbol{y}^*})$$
 cross-spectrum
$$\mathcal{L}(\boldsymbol{y}, \boldsymbol{y}^*) = \text{MSE}(\text{Re}[\Gamma_{\boldsymbol{y}, \mathbf{y}_n}], \text{Re}[\Gamma_{\boldsymbol{y}^*, \mathbf{y}_n^*}])$$

$$+ \text{MSE}(\text{Im}[\Gamma_{\boldsymbol{y}, \mathbf{y}_n}], \text{Im}[\Gamma_{\boldsymbol{y}^*, \mathbf{y}_n^*}])$$

How to make ML predictions statistically consistent with observations

Quantile loss

heavy tails and extremes

Cross-spectrum loss

space-time coherency

$$\mathcal{L}(\boldsymbol{y}, \boldsymbol{y}^*) = \text{MSE}(Q_{\boldsymbol{y}}, Q_{\boldsymbol{y}^*})$$
 cross-spectrum
$$\mathcal{L}(\boldsymbol{y}, \boldsymbol{y}^*) = \text{MSE}(\text{Re}[\Gamma_{\boldsymbol{y}, \mathbf{y}_n}], \text{Re}[\Gamma_{\boldsymbol{y}^*, \mathbf{y}_n^*}])$$

$$+ \text{MSE}(\text{Im}[\Gamma_{\boldsymbol{y}, \mathbf{y}_n}], \text{Im}[\Gamma_{\boldsymbol{y}^*, \mathbf{y}_n^*}])$$

Debiased, High-Resolution Simulation over Europe

- Training protocol described in preprint (arXiv:2210.12137)
- Fronts and waves present in the full-scale ML simulation
- Statistics and correlations consistent with reanalysis

Vorticity close to ocean surface

Debiased, High-Resolution Simulation over Europe

- Training protocol described in preprint (arXiv:2210.12137)
- Fronts and waves present in the full-scale ML simulation
- Statistics and correlations consistent with reanalysis

7

Debiased, High-Resolution Simulation over Europe

- Training protocol described in preprint (arXiv:2210.12137)
- Fronts and waves present in the full-scale ML simulation
- Statistics and correlations consistent with reanalysis

Vorticity close to ocean surface

Conclusions

More details available in our preprint (arXiv:2210.12137)

Key ingredients:

- compact, multi-scale representation of atmospheric processes
- statistical loss functions for extremes and space-time coherency
- divide-and-conquer strategy for efficient training of regional models

Conclusions

More details available in our preprint (arXiv:2210.12137)

Key ingredients:

- compact, multi-scale representation of atmospheric processes
- statistical loss functions for extremes and space-time coherency
- divide-and-conquer strategy for efficient training of regional models
- Better, faster (> 10x) quantification of weather extremes

Conclusions

More details available in our preprint (arXiv:2210.12137)

Key ingredients:

- compact, multi-scale representation of atmospheric processes
- statistical loss functions for extremes and space-time coherency
- divide-and-conquer strategy for efficient training of regional models
- Better, faster (> 10x) quantification of weather extremes

Current thrusts:

- incorporate more physics
- benchmark different seq-to-seq models
- validate with risk-oriented metrics (e.g., storm severity)

