Learn to Bid: Deep Reinforcement Learning with Transformer for Energy Storage in Energy and Contingency Reserve Markets Jinhao Li¹, Changlong Wang¹, Yanru Zhang², Hao Wang¹ Monash University University of Electronic Science and Technology of China ## Background of Battery Storage Adoption in the Electricity Market #### Preliminary on the Australian National Electricity Market (NEM) #### Revenue Maximization **Spot Market** Energy Arbitrage—Buy Low and Sell High $$R^{S} = \alpha \sum_{i=1}^{T} (b_t^{dch} - b_t^{ch}) \rho_t^{S} p_t^{S}$$ R: Revenue α : Duration time of one power dispatch interval b_t^{dch}/b_t^{ch} : Bid to discharge or charge p_t : Bid power ρ_t : Market clearing price Contingency FCAS Market Deliver FCAS—Respond to Contingency Event $$R^{FCAS} = R^{FR} + R^{FL} + R^{SR} + R^{SL} + R^{DR} + R^{DL}$$ FR: Fast Raise FL: Fast Lower SR: Slow Raise SL: Slow Lower DR: Delayed Raise DL: Delayed Lower ## **Optimal Bidding Strategy via DRL and Transformer** ## **Optimal Bidding Strategy via DRL and Transformer** *f*_t: extracted feature vector **Bidding Decision** $\boldsymbol{a_t} = \left(b_t^{dch}, b_t^{ch}, a_t^{ES}, a_t^{FR}, a_t^{FL}, a_t^{SR}, a_t^{SL}, a_t^{DR}, a_t^{DL}\right)$ b_t^{dch}/b_t^{ch} : Bid to discharge or charge a_t : bid in participated markets. #### **Experimental Results** Dataset Realistic market prices from NEM Benchmark Predict-and-optimize (PAO) Energy Price Predictor **Optimization Solver** Bidding Decision Evaluation Results | Bid Scenario | Without TTFE | With TTFE | Boost | |-------------------------|-----------------------------|-----------------------------|-------------| | Energy Spot Market | <i>AU</i> \$ 122,005 | <i>AU</i> \$ 197,157 | 62 % | | Contingency FCAS Market | <i>AU</i> \$ 45,526 | <i>AU</i> \$ 64,219 | 41 % | | Joint Market | <i>AU</i> \$ 153,952 | <i>AU</i> \$ 238,608 | 55 % | Without TTFE1 With TTFE 1 TTFE: Transformer-based Temporal Feature Extractor #### Conclusion - 1. We developed a model-free revenue-oriented DRL-based strategy for the BESS to bid in the spot and contingency FCAS markets - 2. We proposed a transformer-based temporal feature extractor to exploit temporal patterns of volatile energy prices. - 3. Simulations show that bidding in the joint market can dramatically improve the viability of the BESS. - 4. The TTFE empowers the BESS to make better decisions, with outcomes significantly outperforming the PAO benchmark. #### **Contact Information** Jinhao Li (Monash University): stephlee175@gmail.com Hao Wang (Monash University): hao.wang2@monash.edu https://research.monash.edu/en/persons/hao-wang