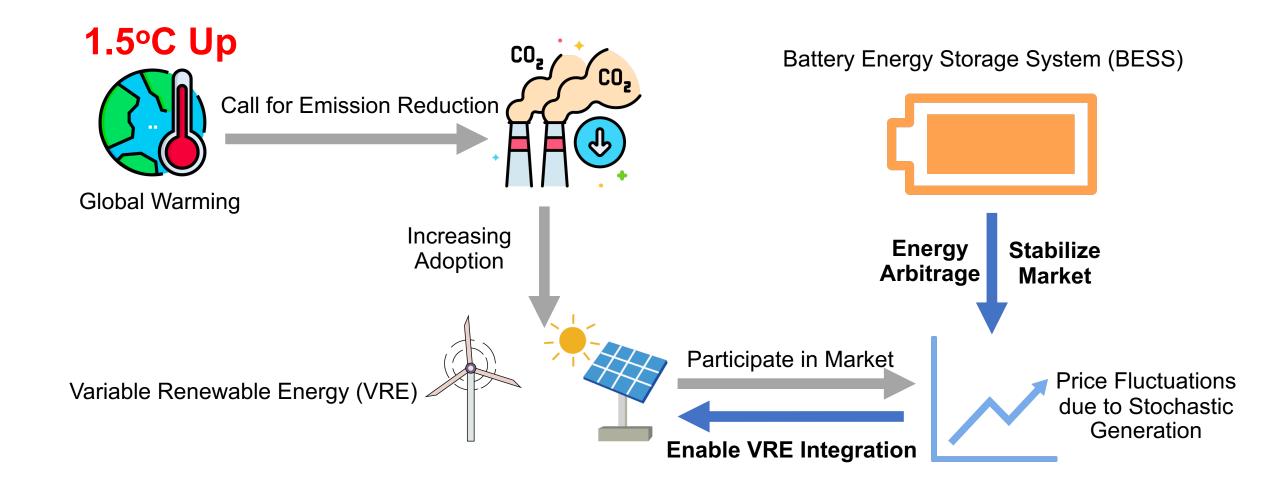


Learn to Bid: Deep Reinforcement Learning with Transformer for Energy Storage in Energy and Contingency Reserve Markets

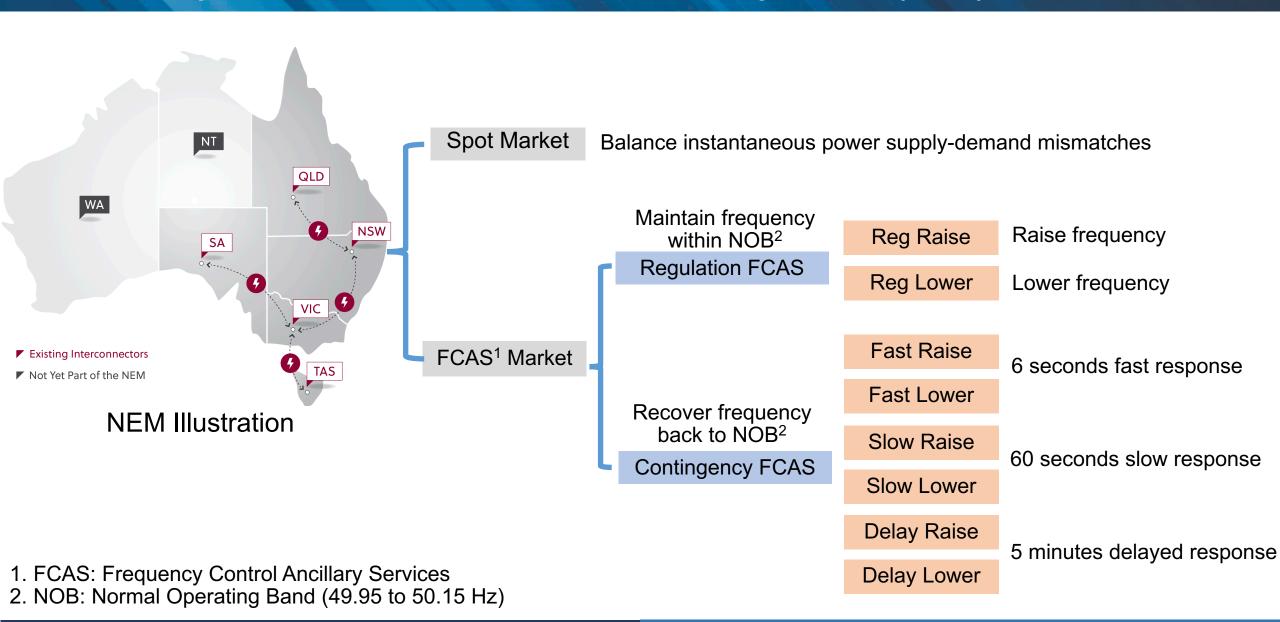
Jinhao Li¹, Changlong Wang¹, Yanru Zhang², Hao Wang¹

Monash University
University of Electronic Science and Technology of China

Background of Battery Storage Adoption in the Electricity Market



Preliminary on the Australian National Electricity Market (NEM)



Revenue Maximization

Spot Market

Energy Arbitrage—Buy Low and Sell High

$$R^{S} = \alpha \sum_{i=1}^{T} (b_t^{dch} - b_t^{ch}) \rho_t^{S} p_t^{S}$$

R: Revenue

 α : Duration time of one power dispatch interval

 b_t^{dch}/b_t^{ch} : Bid to discharge or charge

 p_t : Bid power

 ρ_t : Market clearing price

Contingency FCAS Market

Deliver FCAS—Respond to Contingency Event

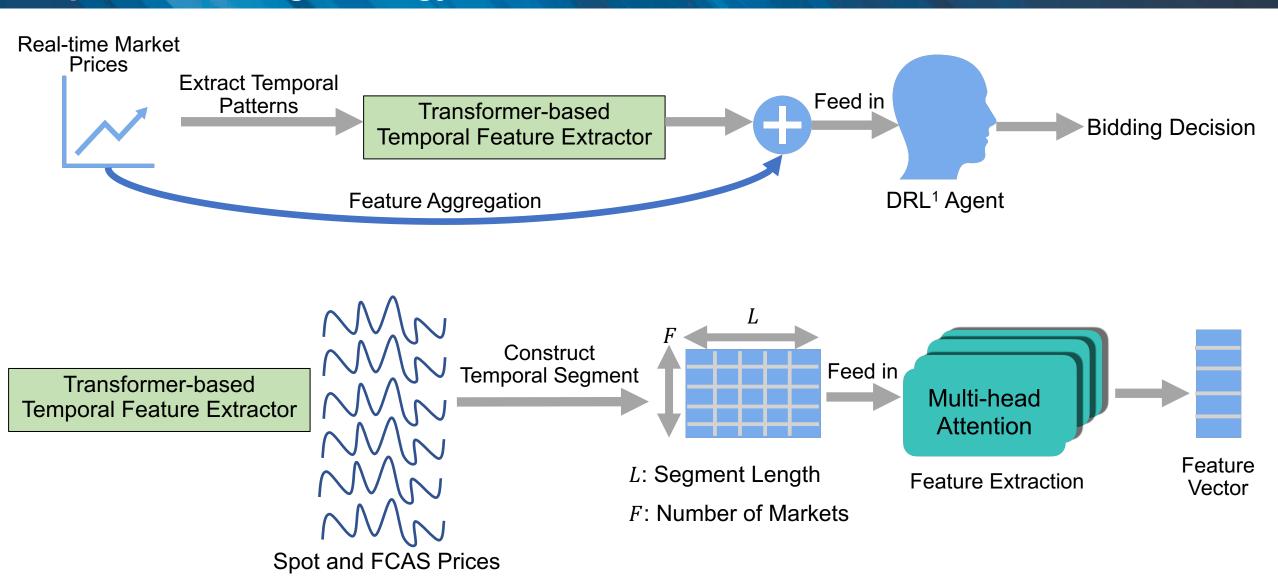
$$R^{FCAS} = R^{FR} + R^{FL} + R^{SR} + R^{SL} + R^{DR} + R^{DL}$$

FR: Fast Raise FL: Fast Lower

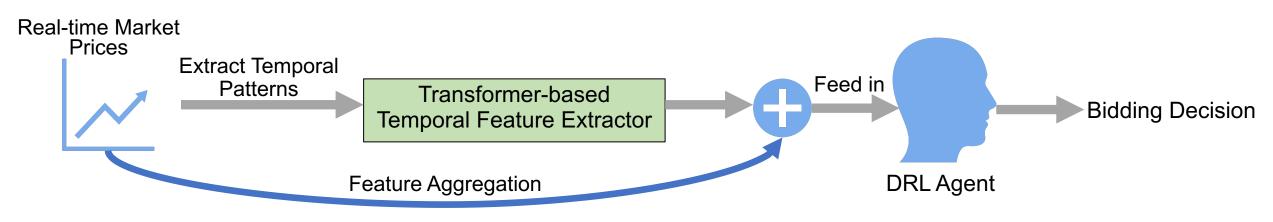
SR: Slow Raise SL: Slow Lower

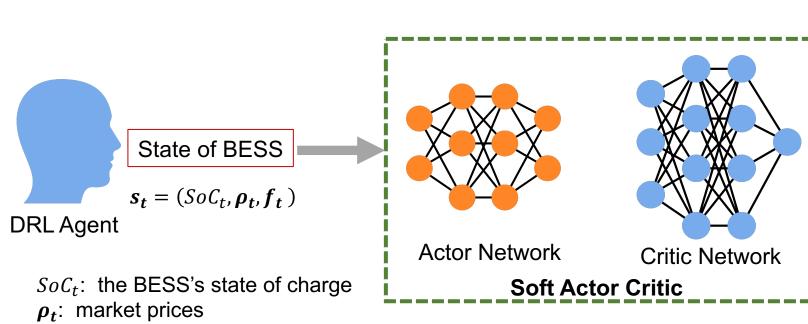
DR: Delayed Raise DL: Delayed Lower

Optimal Bidding Strategy via DRL and Transformer



Optimal Bidding Strategy via DRL and Transformer





*f*_t: extracted feature vector

Bidding Decision

 $\boldsymbol{a_t} = \left(b_t^{dch}, b_t^{ch}, a_t^{ES}, a_t^{FR}, a_t^{FL}, a_t^{SR}, a_t^{SL}, a_t^{DR}, a_t^{DL}\right)$

 b_t^{dch}/b_t^{ch} : Bid to discharge or charge a_t : bid in participated markets.

Experimental Results

Dataset

Realistic market prices from NEM

Benchmark

Predict-and-optimize (PAO)

Energy Price Predictor

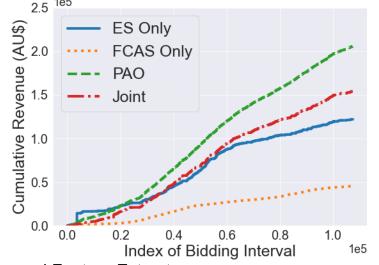
Optimization Solver

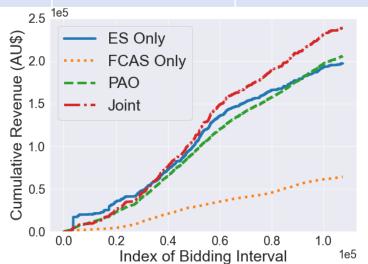
Bidding Decision

Evaluation Results

Bid Scenario	Without TTFE	With TTFE	Boost
Energy Spot Market	<i>AU</i> \$ 122,005	<i>AU</i> \$ 197,157	62 %
Contingency FCAS Market	<i>AU</i> \$ 45,526	<i>AU</i> \$ 64,219	41 %
Joint Market	<i>AU</i> \$ 153,952	<i>AU</i> \$ 238,608	55 %

Without TTFE1





With TTFE

1 TTFE: Transformer-based Temporal Feature Extractor

Conclusion

- 1. We developed a model-free revenue-oriented DRL-based strategy for the BESS to bid in the spot and contingency FCAS markets
- 2. We proposed a transformer-based temporal feature extractor to exploit temporal patterns of volatile energy prices.
- 3. Simulations show that bidding in the joint market can dramatically improve the viability of the BESS.
- 4. The TTFE empowers the BESS to make better decisions, with outcomes significantly outperforming the PAO benchmark.

Contact Information

Jinhao Li (Monash University): stephlee175@gmail.com

Hao Wang (Monash University): hao.wang2@monash.edu

https://research.monash.edu/en/persons/hao-wang