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Stewardship of the Transition Zeitgeist

detect, track and intervene on natural & engmeered trends

Bletchley Park, 1941

Effectors (platform design, embedded agents,
comms, etc.) supported by social analytics



iterate

Stewarding transition policy

Policy development process:
e design policy
e deploy policy
* measure & analyze effectiveness
— Public opinion: What do people think about it?

1994 2004 2014

[ )
moorat Re p ublica ocrét n p wblican  Democrat Re p ublica

Backdrop: Polarization ‘I‘ ‘IL ‘..

r‘ll




Today'’s topic:
Public opinion of carbon pricing in Canada

A case study in ideology-driven policy opinions




The ‘price on pollution’/‘carbon tax’

e In Canada: (PO//UtefS pay:  carbon levy on fuel purchases A

S20/ton 2019
S50/ton 2022
S170/ton 2030

\_

“big emitters” program for industrial facilities
rebate program for everyone:
-S in tax return to 8/10 households in Canada y

e Many economists agree: flexible, simple, & easy to ramp up
e Yet, popularity low—typically falling along political lines.

“Technology, not taxes, is the way forward to
reduce emissions” —Conservative Party Leader



Public support for carbon pricing (%)

Public support for the carbon tax
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I i ~ Intervening on beliefs with facts

Then just show them the data?
| OTal INCOME Tax 02aucied [EMOUNIs om aN L-anadian sips) 437
Refundable Quebec abatement (See line 440 in the guide.) 430 + ~
. CPP overpayment (See ling 308 in the guide.) 445 + E
mil__ Employment insurance overpayment (See line 312 in the guide.) 450 + S
+ Climate action incentive (Complete Schedule 14.) 49+ 457 S ik
Refundable medical expense supplement {Complete the Worksheet for the retum.) 452 + — S
Working income tax benefit (WITE) {Complete Schedule §.) 453 + A P
Hefund of investment tax credit (Get and complete Form T2038(IND).) 4584 4 "cj
Part X11.2 trust tax credit (box 38 of all T3 slips and box 209 of all T3013 slips) 456 + =
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Not necessarily irrational!

40 strong prior for h = P(h|data) =~ P(h)!
“IEEEEEEE (Bayesian confirmation theory)
SO S]_OOO Mildenberger et al. Nat. Clim. Change (2022)



What is the
object of study?

e Target Object:
type-conditioned distribution

over a belief network

o Inter-connected

o Highly dynamic

o Driven by many objectives
e expressed in what we

Surveys 5 T O S collectively say and do

Social media

Ideology: “a system of ideas and ideals,
especially one which forms the basis of
economic or political theory and policy”
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Support shifts strongly with political views/voting
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“simplex”

A
NO
Topic Models are generative models ”“p“”:l@&
VA
N : Z
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Vocabulary—an indexed set of words {wy,..., wy}

Topic, t = (p4,..., py)—Sample probabilities over a vocabulary i
Topic mixture, @ = (q4,..., gx)—Sample probabilities over K given topics t
Topic mixture prior, P;(@)—a distribution on 6, given respondent type sy, Wo
Process to generate a response: tK
'-°9
e
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Generative Topic Models

Dirichlet

Latent Dirichlet Allocation (LDA) (Blei et al. 2003)|
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Correlated Topic Model (CTM)
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SAGE
(Eisenstein et al. 2011)

“Structural Topic Model (Roberts et al. 2014)



Topic Quality Assessment

# topics
. 10.0 e 5
Exclusivity
High when a topic’s frequent words (o)
are exclusive to that topic >
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Conclusion: No single number of topics stands out.



Posterior Inference of STMs

e Given parameters, compute the most probable topic mixture, 8, for each
response

Cloud T0|IOIC_
covariance correlation
Ll network
!  ad
_
‘»..,f
Prior Posterior (set of )

How to analyze these type-conditioned 8-data clouds?



o _ Left-learning/
Predictive power of mixture space Right-leaning

Progressive Voting/
Conservative Voting
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Characterizing Ideology

e Previously: subjective labelling of topics from interpreting top words.
e But, “ideological” strength should be independent of topic semantics...
e Solution: geometry of mixture data cloud

(size) (location) (eccentricity) (signed direction)

Intrinsic Fraction of

(K-1)-dim. Vplume Distance to center dimension_ality positive pairwise
from covariance (H(8))/Hmax from covariance correlations
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Quantitative social science

Datastreams: [text, behaviour,...] as data

— social media, news media, transcripts, internet,
Models: Multiscale, many-agent system models

— e.g. Sociophysics with neural network components
Infra: pipelines for now-casting/data management
Methods: statistical inference/deep learning
Mathematical theory:

— Control theory/reinforcement learning theory

— Game theory (esp. mechanism design

— evolutionary game theory/statistical mechanics
Disciplines: psychology/public policy/political
science/economics/sociology
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A New Framework for Machine
Learning and the Social Sciences

Justin Grimmer | Margaret E. Roberts | Brandon M. Stewart




Policy Implications

« Better design/better communication
- Meet people where they are.

« Aresponse to “no one is driving the bus”
- discourse evolving in unintended ways
- Many trying to sculpt the narrative

« Stewardship ethics best developed in open
science setting
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