

NeurIPS 2022 Workshop

Tackling Climate Change with Machine Learning

Analyzing Micro-Level Rebound Effects of Energy Efficient Technologies

Mayank Jain^{1,2*}, Mukta Jain^{3*}, Tarek AlSkaif⁴, and Soumyabrata Dev^{1,2}

 1 UCD School of Computer Science, Dublin, Ireland 2 ADAPT SFI Research Centre, Dublin, Ireland 3 Delhi School of Economics, University of Delhi, Delhi India 4 Wageningen University and Research, Wageningen, The Netherlands

*Authors Contributed Equally.

Send correspondence to S. Dev, e-mail: soumyabrata.dev@ucd.ie

- ↑ energy efficiency of appliances ⇒ energy saved
- Evidence suggest otherwise
- Reason is the presence of the following in consumer behavious
 - | Javana Baraday (JB) | Decrease in cost | Ingresse in demand | Reduced impact
 - Ontimiem Rise (OR) Underestimation of negative events by human's actions
- More simply stated, consumers limit their electricity consumption because of:
 - Monetary cost of electricity
 - Environmental impac
- With ↑ energy efficiency, both of the aforementioned factors ↓
 ⇒ relatively ↑ energy consumption

- ↑ energy efficiency of appliances ⇒ energy saved
- Evidence suggest otherwise
- Reason is the presence of the following in consumer behavious
 - layang Paradov (IP) Degreess in cost → Increase in demand → Reduced impac
 - Ontimism Rise (OR) Underestimation of negative events by human's action
- More simply stated, consumers limit their electricity consumption because of:
 - Monetary cost of electricity
 - Environmental impac
- With ↑ energy efficiency, both of the aforementioned factors ↓
 ⇒ relatively ↑ energy consumption

- ↑ energy efficiency of appliances ⇒ energy saved
- Evidence suggest otherwise
- Reason is the presence of the following in consumer behaviour:
 - Jevons Paradox (JP) Decrease in cost ⇒ Increase in demand ⇒ Reduced impact
 - Optimism Bias (OB) Underestimation of negative events by human's actions
- More simply stated, consumers limit their electricity consumption because of:
 - Monetary cost of electricity
 - Environmental impact
- With ↑ energy efficiency, both of the aforementioned factors ↓
 ⇒ relatively ↑ energy consumption

- ↑ energy efficiency of appliances ⇒ energy saved
- Evidence suggest otherwise
- Reason is the presence of the following in consumer behaviour:
 - Jevons Paradox (JP) Decrease in cost ⇒ Increase in demand ⇒ Reduced impact
 - Ontimism Bias (OB) Underestimation of negative events by human's actions
- More simply stated, consumers limit their electricity consumption because of:
 - Monetary cost of electricity
 - Environmental impact
- With ↑ energy efficiency, both of the aforementioned factors ↓
 ⇒ relatively ↑ energy consumption

- ↑ energy efficiency of appliances ⇒ energy saved
- Evidence suggest otherwise
- Reason is the presence of the following in consumer behaviour:
 - Jevons Paradox (JP) Decrease in cost \Rightarrow Increase in demand \Rightarrow Reduced impact
 - Optimism Bias (OB) Underestimation of negative events by human's actions
- More simply stated, consumers limit their electricity consumption because of:
 - Monetary cost of electricity
 - Environmental impact
- With ↑ energy efficiency, both of the aforementioned factors ↓
 ⇒ relatively ↑ energy consumption

- ↑ energy efficiency of appliances ⇒ energy saved
- Evidence suggest otherwise
- Reason is the presence of the following in consumer behaviour:
 - Jevons Paradox (JP) Decrease in cost ⇒ Increase in demand ⇒ Reduced impact
 - Optimism Bias (OB) Underestimation of negative events by human's actions
- More simply stated, consumers limit their electricity consumption because of:
 - Monetary cost of electricity
 - Environmental impact
- With ↑ energy efficiency, both of the aforementioned factors ↓
 ⇒ relatively ↑ energy consumption

- ↑ energy efficiency of appliances ⇒ energy saved
- Evidence suggest otherwise
- Reason is the presence of the following in consumer behaviour:
 - Jevons Paradox (JP) Decrease in cost ⇒ Increase in demand ⇒ Reduced impact
 - Optimism Bias (OB) Underestimation of negative events by human's actions
- More simply stated, consumers limit their electricity consumption because of:
 - Monetary cost of electricity
 - Environmental impact
- With ↑ energy efficiency, both of the aforementioned factors ↓
 ⇒ relatively ↑ energy consumption

- ↑ energy efficiency of appliances ⇒ energy saved
- Evidence suggest otherwise
- Reason is the presence of the following in consumer behaviour:
 - Jevons Paradox (JP) Decrease in cost ⇒ Increase in demand ⇒ Reduced impact
 - Optimism Bias (OB) Underestimation of negative events by human's actions
- More simply stated, consumers limit their electricity consumption because of:
 - Monetary cost of electricity
 - Environmental impact
- With ↑ energy efficiency, both of the aforementioned factors ↓
 ⇒ relatively ↑ energy consumption

- ↑ energy efficiency of appliances ⇒ energy saved
- Evidence suggest otherwise
- Reason is the presence of the following in consumer behaviour:
 - Jevons Paradox (JP) Decrease in cost ⇒ Increase in demand ⇒ Reduced impact
 - Optimism Bias (OB) Underestimation of negative events by human's actions
- More simply stated, consumers limit their electricity consumption because of:
 - Monetary cost of electricity
 - Environmental impact
- With ↑ energy efficiency, both of the aforementioned factors ↓
 ⇒ relatively ↑ energy consumption

- 14th iteration of the residential energy consumption survey (RECS) program, 2015
- Publicly available and feature rich 'microdata'
- Data from more than 5600 randomly sampled households across USA
- For i^{th} appliance, energy consumption data (KWH^i) and energy rating (ESQ^i)
- Features also available for many household characteristics
- Since the impact of JP and OB might be different for different households, household characteristics are required as control variables

- 14th iteration of the residential energy consumption survey (RECS) program, 2015
- Publicly available and feature rich 'microdata'
- Data from more than 5600 randomly sampled households across USA
- For i^{th} appliance, energy consumption data (KWH^i) and energy rating (ESQ^i)
- Features also available for many household characteristics
- Since the impact of JP and OB might be different for different households, household characteristics are required as control variables.

- 14th iteration of the residential energy consumption survey (RECS) program, 2015
- Publicly available and feature rich 'microdata'
- Data from more than 5600 randomly sampled households across USA
- For i^{th} appliance, energy consumption data (KWH^i) and energy rating (ESQ^i)
- Features also available for many household characteristics
- Since the impact of JP and OB might be different for different households, household characteristics are required as control variables

- 14th iteration of the residential energy consumption survey (RECS) program, 2015
- Publicly available and feature rich 'microdata'
- Data from more than 5600 randomly sampled households across USA
- For i^{th} appliance, energy consumption data (KWH^i) and energy rating (ESQ^i)
- Features also available for many household characteristics
- Since the impact of JP and OB might be different for different households, household characteristics are required as control variables

- 14th iteration of the residential energy consumption survey (RECS) program, 2015
- Publicly available and feature rich 'microdata'
- Data from more than 5600 randomly sampled households across USA
- For i^{th} appliance, energy consumption data (KWH^i) and energy rating (ESQ^i)
- Features also available for many household characteristics
- Since the impact of JP and OB might be different for different households, household characteristics are required as control variables

- 14th iteration of the residential energy consumption survey (RECS) program, 2015
- Publicly available and feature rich 'microdata'
- Data from more than 5600 randomly sampled households across USA
- For i^{th} appliance, energy consumption data (KWH^i) and energy rating (ESQ^i)
- Features also available for many household characteristics
- Since the impact of JP and OB might be different for different households, household characteristics are required as control variables

Results

Conclusion

Pre-Processing

Dataset

Households with missing data were not considered

Methodology

- Omission done separately for each appliance to maximize data availability
- List of appliances that were considered, along with the number of households (hh) that remain eligible:
 - Clothes Dryer (CD) 4 101 hh
 - Clothes Washer (CW) 4, 172 hh
 - Dish Washer (DW) -3,501 hh
 - Freezer (FZ) − 1,700 hh
 - Refrigerator (RF) 4,717 hh
 - Light Bulbs (LB) 4.738 hh
 - Water Heater (WH) 4,724 hh

- Households with missing data were not considered
- Omission done separately for each appliance to maximize data availability
- List of appliances that were considered, along with the number of households (hh) that remain eligible:
 - Clothes Dryer (CD) 4 101 hh
 - Clothes Washer (CW) 4, 172 hb
 - Dish Washer (DW) _ 3 501 hh
 - Freezer (FZ) 1.700 hh
 - Refrigerator (RF) 4,717 hh
 - Light Bulbs (LB) 4.738 hb
 - Water Heater (WH) 4,724 hh

- Households with missing data were not considered
- Omission done separately for each appliance to maximize data availability
- List of appliances that were considered, along with the number of households (hh) that remain eligible:
 - Clothes Dryer (CD) − 4,101 hh
 - Clothes Washer (CW) 4,172 hh
 - Dish Washer (DW) − 3,501 hh
 - Freezer (FZ) 1,700 hh
 - Refrigerator (RF) 4,717 hh
 - Light Bulbs (LB) 4,738 hh
 - Water Heater (WH) 4,724 hh

- Households with missing data were not considered
- Omission done separately for each appliance to maximize data availability
- List of appliances that were considered, along with the number of households (hh) that remain eligible:
 - Clothes Dryer (CD) 4, 101 hh
 - Clothes Washer (CW) 4,172 hh
 - Dish Washer (DW) − 3,501 hh
 - Freezer (FZ) − 1,700 hh
 - Refrigerator (RF) -4,717 hh
 - Light Bulbs (LB) 4,738 hh
 - Water Heater (WH) 4,724 hh

- Households with missing data were not considered
- Omission done separately for each appliance to maximize data availability
- List of appliances that were considered, along with the number of households (hh) that remain eligible:
 - Clothes Dryer (CD) − 4,101 hh
 - Clothes Washer (CW)-4,172 hh
 - Dish Washer (DW) − 3,501 hh
 - Freezer (FZ) 1,700 hh
 - Refrigerator (RF) 4,717 hh
 - Light Bulbs (LB) 4,738 hh
 - Water Heater (WH) 4,724 hh

- Households with missing data were not considered
- Omission done separately for each appliance to maximize data availability
- List of appliances that were considered, along with the number of households (hh) that remain eligible:
 - Clothes Dryer (CD) − 4, 101 hh
 - Clothes Washer (CW)-4,172 hh

 - Freezer (FZ) 1,700 hh
 - Refrigerator (RF) 4,717 hh
 - Light Bulbs (LB) 4,738 hh
 - Water Heater (WH) 4,724 hh

- Households with missing data were not considered
- Omission done separately for each appliance to maximize data availability
- List of appliances that were considered, along with the number of households (hh) that remain eligible:
 - Clothes Dryer (CD) − 4, 101 hh
 - Clothes Washer (CW) 4,172 hh
 - Dish Washer (DW) 3,501 hh
 - Freezer (FZ) − 1,700 hh
 - Refrigerator (RF) 4,717 hh
 - Light Bulbs (LB) 4,738 hh
 - Water Heater (WH) 4,724 hh

- Households with missing data were not considered
- Omission done separately for each appliance to maximize data availability
- List of appliances that were considered, along with the number of households (hh) that remain eligible:
 - Clothes Dryer (CD) − 4, 101 hh
 - Clothes Washer (CW) 4,172 hh
 - Dish Washer (DW) -3,501 hh
 - Freezer (FZ) 1,700 hh
 - Refrigerator (RF) 4,717 hh
 - Light Bulbs (LB) 4,738 hh
 - Water Heater (WH) 4,724 hh

- Households with missing data were not considered
- Omission done separately for each appliance to maximize data availability
- List of appliances that were considered, along with the number of households (hh) that remain eligible:
 - Clothes Dryer (CD) − 4, 101 hh
 - Clothes Washer (CW) 4,172 hh
 - Dish Washer (DW) -3,501 hh
 - Freezer (FZ) 1,700 hh
 - Refrigerator (RF) 4,717 hh
 - Light Bulbs (LB) 4,738 hh
 - Water Heater (WH) 4,724 hh

- Households with missing data were not considered
- Omission done separately for each appliance to maximize data availability
- List of appliances that were considered, along with the number of households (hh) that remain eligible:
 - Clothes Dryer (CD) − 4, 101 hh
 - Clothes Washer (CW) 4,172 hh
 - Dish Washer (DW) − 3,501 hh
 - Freezer (FZ) 1,700 hh
 - Refrigerator (RF) 4,717 hh
 - Light Bulbs (LB) 4,738 hh

 - Water Heater (WH) 4,724 hh

- Aims to visualize behavioral shifts in consumers when they use energy efficient appliances
- Hence, we model appliances-wise energy consumption over the energy efficiency of those appliances
- If JP and OB exist:
 - Consumers using an energy efficient appliance will consume more power than their counterparts.

- Aims to visualize behavioral shifts in consumers when they use energy efficient appliances
- Hence, we model appliances-wise energy consumption over the energy efficiency of those appliances
- If JP and OB exist:
 - Consumers using an energy efficient appliance will consume more power than their counterparts.

- Aims to visualize behavioral shifts in consumers when they use energy efficient appliances
- Hence, we model appliances-wise energy consumption over the energy efficiency of those appliances
- If JP and OB exist:
 - Consumers using an energy efficient appliance will consume more power than their counterparts.

- Aims to visualize behavioral shifts in consumers when they use energy efficient appliances
- Hence, we model appliances-wise energy consumption over the energy efficiency of those appliances
- If JP and OB exist:
 - Consumers using an energy efficient appliance will consume more power than their counterparts.

Results

Conclusion

Methods

- Normalize the electricity consumption data (KWH^i) for each appliance $\Rightarrow nKWH^i$
- $nKWH^i \Rightarrow$ target dependent variable Energy star qualified flag $(ESQ^i) \Rightarrow$ independent variable
- Use $hhCh_n$, $\forall n \in \{\text{hh characteristics}\}\$ as controls
- For easy interpretation, series of multi-variate linear regressions are performed as:

$$nKWH^{i} = \alpha^{i} \cdot ESQ^{i} + \sum_{n=1}^{15} \beta_{n}^{i} \cdot hhCh_{n} + \gamma^{i}$$
 (1)

$$\frac{\partial nKWH^i}{\partial ESO^i} = \alpha^i \tag{2}$$

- Normalize the electricity consumption data (KWH^i) for each appliance $\Rightarrow nKWH^i$
- $nKWH^i \Rightarrow$ target dependent variable Energy star qualified flag $(ESQ^i) \Rightarrow$ independent variable
- Use $hhCh_n$, $\forall n \in \{\text{hh characteristics}\}\$ as controls
- For easy interpretation, series of multi-variate linear regressions are performed as:

$$nKWH^{i} = \alpha^{i} \cdot ESQ^{i} + \sum_{n=1}^{15} \beta_{n}^{i} \cdot hhCh_{n} + \gamma^{i}$$
 (1)

$$\frac{\partial nKWH^i}{\partial ESO^i} = \alpha^i \tag{2}$$

- Normalize the electricity consumption data (KWH^i) for each appliance $\Rightarrow nKWH^i$
- $nKWH^i \Rightarrow$ target dependent variable Energy star qualified flag $(ESQ^i) \Rightarrow$ independent variable
- Use $hhCh_n$, $\forall n \in \{\text{hh characteristics}\}\$ as controls
- For easy interpretation, series of multi-variate linear regressions are performed as:

$$nKWH^{i} = \alpha^{i} \cdot ESQ^{i} + \sum_{n=1}^{15} \beta_{n}^{i} \cdot hhCh_{n} + \gamma^{i}$$
 (1)

$$\frac{\partial nKWH^{i}}{\partial FSQ^{i}} = \alpha^{i} \tag{2}$$

- Normalize the electricity consumption data (KWH^i) for each appliance $\Rightarrow nKWH^i$
- $nKWH^i \Rightarrow$ target dependent variable Energy star qualified flag $(ESQ^i) \Rightarrow$ independent variable
- Use $hhCh_n$, $\forall n \in \{\text{hh characteristics}\}\$ as controls
- For easy interpretation, series of multi-variate linear regressions are performed as:

$$nKWH^{i} = \alpha^{i} \cdot ESQ^{i} + \sum_{n=1}^{15} \beta_{n}^{i} \cdot hhCh_{n} + \gamma^{i}$$
(1)

$$\frac{\partial nKWH^{i}}{\partial FSQ^{i}} = \alpha^{i} \tag{2}$$

- Normalize the electricity consumption data (KWH^{i}) for each appliance $\Rightarrow nKWH^{i}$
- $nKWH^i \Rightarrow$ target dependent variable Energy star qualified flag $(ESQ^i) \Rightarrow$ independent variable
- Use $hhCh_n$, $\forall n \in \{\text{hh characteristics}\}\$ as controls
- For easy interpretation, series of multi-variate linear regressions are performed as:

$$nKWH^{i} = \alpha^{i} \cdot ESQ^{i} + \sum_{n=1}^{15} \beta_{n}^{i} \cdot hhCh_{n} + \gamma^{i}$$
(1)

$$\frac{\partial nKWH^i}{\partial FSQ^i} = \alpha^i \tag{2}$$

Energy Consumption vs. Energy Efficiency

Plot showing normalized KWH dependence on ESQ for different appliances. Estimated value of the dependence parameter (α)), its 95% confidence interval and the absolute value of t-statistic are reported for each appliance. If $\alpha > 0$, appliance consumes more electricity, in general, when it is energy star qualified.

6/14

Energy Consumption vs. Energy Efficiency

Plot showing normalized KWH dependence on ESQ for different appliances. Estimated value of the dependence parameter (α)), its 95% confidence interval and the absolute value of t-statistic are reported for each appliance. If $\alpha > 0$, appliance consumes more electricity, in general, when it is energy star qualified.

7/14

Energy Consumption vs. Energy Efficiency

Plot showing normalized KWH dependence on ESQ for different appliances. Estimated value of the dependence parameter (α)), its 95% confidence interval and the absolute value of t-statistic are reported for each appliance. If $\alpha > 0$, appliance consumes more electricity, in general, when it is energy star qualified.

Energy Consumption vs. Energy Efficiency

Plot showing normalized KWH dependence on ESQ for different appliances. Estimated value of the dependence parameter (α)), its 95% confidence interval and the absolute value of t-statistic are reported for each appliance. If $\alpha > 0$, appliance consumes more electricity, in general, when it is energy star qualified.

Analysis

• Improving energy efficiency of substitutable appliances tends to result in overall increased electricity consumption

- RECS 2015 'microdata' also provides usage frequency of appliances
- Frequency trends for CW and CD are similar
- Assumption: Both CW & CD are used together
- Difference in energy consumption yet could come from the degree of drying capacity for CD
- ... KWHcD/KWHcW for an individual household will represent the impact of JP and OB over that household

- RECS 2015 'microdata' also provides usage frequency of appliances
- Frequency trends for CW and CD are similar
- Assumption: Both CW & CD are used together
- Difference in energy consumption yet could come from the degree of drying capacity for CD
- ... KWHcD/KWHcW for an individual household will represent the impact of JP and OB over that household

- RECS 2015 'microdata' also provides usage frequency of appliances
- Frequency trends for CW and CD are similar
- Assumption: Both CW & CD are used together
- Difference in energy consumption yet could come from the degree of drying capacity for CD
- .: KWHcD/KWHcW for an individual household will represent the impact of JP and OB over that household

- RECS 2015 'microdata' also provides usage frequency of appliances
- Frequency trends for CW and CD are similar
- Assumption: Both CW & CD are used together
- Difference in energy consumption yet could come from the degree of drying capacity for CD
- .: KWHcp/KWHcw for an individual household will represent the impact of JP and OB over that household

- RECS 2015 'microdata' also provides usage frequency of appliances
- Frequency trends for CW and CD are similar
- Assumption: Both CW & CD are used together
- Difference in energy consumption yet could come from the degree of drying capacity for CD
- .: KWHCD/KWHCW for an individual household will represent the impact of JP and OB over that household

Frequency distribution of households that have both CD and CW, with respect to ${}^{KWH_{CD}}/{}_{KWH_{CW}}$. Blue bars: set of households whose both CD and CW are not energy efficient (ESQ=0); Orange bars: set of households whose both CD and CW are energy efficient (ESQ=1).

- A micro level analysis is performed to identify the reason behind individual consumer responses upon increasing efficiency of any appliance
- The paper identifies that the degree of rebound effect varies across the individuals and can only be seen in appliances which are substitutable
- Proposed an index to estimate the influence of the behavioral shifts (subject to further validation)
- In future, recommend to model target audience's behavioural shifts \rightarrow help make policy decisions
- Suggests focused policy interventions for substitutable appliances

- A micro level analysis is performed to identify the reason behind individual consumer responses upon increasing efficiency of any appliance
- The paper identifies that the degree of rebound effect varies across the individuals and can only be seen in appliances which are substitutable
- Proposed an index to estimate the influence of the behavioral shifts (subject to further validation)
- ullet In future, recommend to model target audience's behavioural shifts ullet help make policy decisions
- Suggests focused policy interventions for substitutable appliances

- A micro level analysis is performed to identify the reason behind individual consumer responses upon increasing efficiency of any appliance
- The paper identifies that the degree of rebound effect varies across the individuals and can only be seen in appliances which are substitutable
- Proposed an index to estimate the influence of the behavioral shifts (subject to further validation)
- ullet In future, recommend to model target audience's behavioural shifts ullet help make policy decisions
- Suggests focused policy interventions for substitutable appliances

- A micro level analysis is performed to identify the reason behind individual consumer responses upon increasing efficiency of any appliance
- The paper identifies that the degree of rebound effect varies across the individuals and can only be seen in appliances which are substitutable
- Proposed an index to estimate the influence of the behavioral shifts (subject to further validation)
- In future, recommend to model target audience's behavioural shifts → help make policy decisions
- Suggests focused policy interventions for substitutable appliances

- A micro level analysis is performed to identify the reason behind individual consumer responses upon increasing efficiency of any appliance
- The paper identifies that the degree of rebound effect varies across the individuals and can only be seen in appliances which are substitutable
- Proposed an index to estimate the influence of the behavioral shifts (subject to further validation)
- In future, recommend to model target audience's behavioural shifts \rightarrow help make policy decisions
- Suggests focused policy interventions for substitutable appliances

Thank You

https://github.com/jain15mayank/Behavioural-Study-Indicative-Tests

