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Background

s Carbon credit
e an incentive scheme to promote projects that have additional benefits for climate change mitigation

e expected to play an important role in offsetting the gap from net zero emission after reduction efforts

s Nature-based solutions (NbS) are important

e GHG emission reduction from NbS will be the primal source of carbon credits supply.
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VM0007: A REDD+ methodology for emission reduction evaluation

Reference region (RRD) is selected based on:

e deforestation agents, landscape factors, socio-economic variables, etc.

PA: Project Area
RRD: Reference Region
for projecting rate of Deforestation

Baseline calculation: simple projection, with adjustment by spatial mapping (optional)

e projection approaches: 1) historical average, 2) linear/non-linear model

pre-specified functional form and requirements on the fitting performance for 2)

PA and RRD
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* The baseline shown above is not the same as the one set by the project; it is calculated by the

authors for this research.



Issues on Carbon Credit

m Junk carbon credit
e Unreasonable baseline setting (Bento et al, 2016; Haya et al., 2020)

e Can’t account for external change (e.g. policy change on forest conservation)
— The use of Synthetic Control Method (Roopsind et al., 2019; Correa et al., 2020; West et al., 2020)

m Early finance problems
e Result-based payment => Projected Carbon Units (Verra, 2022)

e |naccurate projection due to too simplified methods; no uncertainty information

m No integrated methods that would solve both issues at the same time

e |In SCM-based approach baseline estimation will be available after a project starts
— Early finance problems remain



Our approach: Bayesian State-Space SCM

m A fully Bayesian modeling for both ex-ante forecasting and ex-post evaluation
e Ex-ante forecasting: State-space modeling

e EXx-post evaluation: SCM (Abadie et al., 2010), Causallmpact (Brodersen et al, 2015)

m Our ex-ante/ex-post estimation can be improved in an integrated manner as a project proceeds

m Uncertainty evaluations can be done based on posteriors



Formulation

m State-space model for annual deforestation rates
e 1y (scalar) and z; (vector): annual deforestation rates of PA and RRDs
e 7, (vector): latent state vector for z,

e [: weight applied to RRDs to get synthetic controls (i.e. baseline)
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m Covariate-dependent prior for covariate matching
e Use the idea of general Bayesian updating (Bissiri et al., 2016)
p(B | {z;};2)) o< exp(—wL(B; {z;}711))p(B)
e Loss function: SCM-type quadratic loss

L(B; {z;};21) = 1/(2J) - (1 — XoB)'V (z1 — XoP)



Formulation

m State-space model for annual deforestation rates
e 1y (scalar) and z, (vector): annual deforestation rate of PA and RRDs
e 7. (vector): latent state vector for z;

e [: weight applied to RRDs to get the synthetic control (i.e. baseline)
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m Covariate-dependent prior to account for covariate matching
e Use the idea of general Bayesian updating (Bissiri et al., 2016)
p(B | {5} oc exp(—wL(B; {23 }/2)p(B)
e Loss function: SCM-type quadratic loss

L(B; {z;};21) = 1/(2J) - (1 — XoB)'V (z1 — XoP)



Posterior distribution and baseline updating

m The full posterior distribution of the weight § and other parameters

e The inference of 8 is based on the data before a project starts (1 <t < T,)
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m  When the project proceeds to t = T; (= T,), the ex-ante baseline prediction (T; < t < T,) can be updated
as the following posterior predictive distribution:
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Data

Forest map
MapBiomas

extract

Annual deforestation rate
within each polygon

v
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Forest polygon data
Project boundary
CAR (Brazil) for RRD

Covariate data

- Distance to road

- Distance to urban centers
- Elevation

- Slope

Mean of covariates
within each polygon

v

extract

*Followed West et al. (2020) for data preprocessing



Result

m The 90% interval of the ex-ante baseline includes the posterior mean of the ex-post baseline at least up
to three years forward => ex-ante prediction worked to some extent.

m The baseline according to VM0007 (0.75%) could have been overestimated, but the project may have
had a small positive effect, especially after 2015

e Cf.) There is an upward trend of deforestation rate in Brazil since 2012
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Blue solid line (—): the posterior mean of the estimated baseline with covariate balancing
Black dashed line (--): the posterior mean of the estimated baseline without covariate balancing



Discussions and Future work

m Need to include some covariates as a time-series

e e.g. road network development is often considered to be an important deforestation driver

m Counterfactual simulations using pixel-level spatial modeling can be necessary.
e The progress of deforestation surface is important

e Forest district polygon may not make sense/exist
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