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Total U.S. Greenhouse Gas Emissions

M Ot i Vati O n by Economic Sector in 2019
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« Transportation is one of the largest sectors of greenhouse gas EE Ny
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- 27% of all U.S. GHG emissions in 2020 [1] B PR 7orsportation

- 12.6% of global GHG emissions in 2019 [2] oS-

Electricity

« Goal: independently estimate road transportation emissions at 25%
a global scale (e.g., using Al/ML, satellite imagery, and other "
widely available data sources)

U.S. Greenhouse Gas Emissions Allocated to Economic Sectors*
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Data Source: Our World in Data based on International Energy Agency (IEA) and the International Council on Clean Transportation (ICCT). Licensed under CC-BY by the author Hannah Ritchie. *Land use sinks and U.S. territories are excluded from this figure.

https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2018
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Machine Learning Approach
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Data & Model Training

Ground truth data: U.S. Highway Performance Monitoring System Average Annual Daily Traffic
(AADT) data set from 2017 [3]

OpenStreetMap (OSM) [4] road network data used for both CNN and GNN models
CNN models: Sentinel-2 [5] or PlanetScope [6] satellite imagery used in combination with OSM
GNN models: Graph attention network v2 (GATv2) [7] architecture

Ground Truth — HPMS AADT
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AADT Validation

AADT error metrics for 14 U.S. hold out cities. RMSE is in units of vehicles per day.

Predicted AADT

Method RMSE MAPE MPE Pearson’s p — 0-509
S2+0OSM 4823.6 116.3% -39.3% 0.58 B85-282
S2+0OSM Ensemble 5249.5 102.3% -71.74% 0.58 £, 931:1115
Planet+OSM 3329.9 1599% 41.01% 0.60 g o
GNN OSM 4470.0 137.6% 103.3% 0.87 8172671
GNN OSM+GHSL 43849 1433% 110.6% 0.87 | [
GNN OSM+CNN 4415.3 135.0% 99.27% 0.88

GNN OSM Ensemble 4307.3 1423% 113.0% 0.88

AADT error metrics for international cities: 26 cities in the UK [8], Buenos Aires
[9], and Paris [10]. RMSE is in units of vehicles per day.

Region RMSE MAPE MPE Pearson’s p

UK. 26 (2018) 3804.6 119.5% 49.2% 0.69

UK. 26 (2019) 31772 1309% 63.0% 0.73

UK. 26 (2020) 34470 84.7%  20.6% 0.69 o

Buenos Aires (2017) 87502 743%  71.8% 0.66 Example ensemﬁaefh’i*ngﬂ,} preditions for the greater
Paris (2021) 94679 963%  20.4% 0.79
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Activity to Emissions

Leverage region-specific emissions factors data to translate ML-predicted activity to total emissions.

~ Emissions Factors™

Database
* Vehicle fleet mix
* Road type
» Fuel efficiencies
* Fuel emissions factors

A
For all road segments in city Z/l |
road;
CO2e/VKT travelled
on road segment
. AADT (vehicles/day) Convert to =
As5|_gn_ AADT on all road segments | | annual VKT Annual VKT Annual CO2e for
predictions to ’| 365 * AADT * (length road segment
road segments of road segment)
ML activity
AADT) prediction AADT = annual average daily traffic .
( ) P edictio VKT = vehicle kilometers travelled Annual CO2e for Clty
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 Emissions estimates compared against other
major emissions inventories [11,12,13] for 14
hold out U.S. cities

« Strong correlation between our estimates
and others

« Range of values highlights uncertainties and
discrepancies between various methods
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City
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Orlando |

Hartford {

CNN GNN
Emissions Dataset RMSE Mean Error MAPE p  RMSE Mean Error MAPE p
EIE_v1_2018 544,225 407,997 77.3% 0.94 3,706,827 3,706,827 321.5% 0.95
EIE_v2_2018 1,180,437 -1,153,065 36.1% 0.94 2,223,303 2,145,764 71.3% 0.96
DARTE_2015 2,606,389 -2,606,389 53.6% 0.98 708,514 692,440 19.8% 0.99
DARTE_2017 3,505,472 -3,505,472 59.5% 0.98 875,254 -206,642 17.2% 0.99

VULCAN_lo_2015 912,134 912,134 124.8% 0.98 4,210,964 4,210,964 473.2% 0.99
VULCAN_mn_2015 761,213 759,672 93.3% 0.98 4,058,502 4,058,502 391.8% 0.99
VULCAN_hi_2015 617,740 607,210 71% 0.98 3,906,040 3,906,040 330.7% 0.99

MAE and Mean Error are in units of tonnes CO,



Global Emissions Validation
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Estimated 2021 Emissions (tonnes C0O2)

Pearson R = 0.866 (p=0.000)

Spearman R = 0.806 (p=0.000)
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 Emissions estimates compared against other
global emissions inventories [14,15] for 14
hold out U.S. cities

« Strong correlation between our estimates
and others

 Discrepancies between estimates warrants
future investigation

Emissions Dataset ~ # of Cities MAE MAPE Mean Error MPE Pearson’s p

EDGAR 2015 500
Carbon Monitor 2019 50
Carbon Monitor 2020 50
Carbon Monitor 2021 50

1,158,740 68.80% 248,624 23.60%  0.74
2,857,690 72.40% -844,634 44.40%  0.87
2,634,598 83.20% -317,283 55.70%  0.86
2,795,294 73.50% -781,053 42.40%  0.87

106

107

Carbon Monitor 2021 Emissions (tonnes C02)
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Discussion and Next Steps

» Hybrid ML + emissions factors method for global road transportation emissions estimation

» Validation performed for both ML activity predictions and derived emission estimates, both within the U.S. and

for global cities.

» Plan to explore integration of traffic/mobility data to improve temporal resolution

« Emissions estimates for top 500 global cities included in November 2022 Climate TRACE asset-level release

(www.climatetrace.orq)
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Contact: derek.rollend@jhuapl.edu
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