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Motivation
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• Transportation is one of the largest sectors of greenhouse gas 
emissions
- 27% of all U.S. GHG emissions in 2020 [1]
- 12.6% of global GHG emissions in 2019 [2]

• Goal: independently estimate road transportation emissions at 
a global scale (e.g., using AI/ML, satellite imagery, and other 
widely available data sources)

https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2018

https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2018


Approach
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Machine Learning Approach
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Data & Model Training
• Ground truth data: U.S. Highway Performance Monitoring System Average Annual Daily Traffic 

(AADT) data set from 2017 [3]
• OpenStreetMap (OSM) [4] road network data used for both CNN and GNN models
• CNN models: Sentinel-2 [5] or PlanetScope [6] satellite imagery used in combination with OSM
• GNN models: Graph attention network v2 (GATv2) [7] architecture
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AADT Validation
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Example ensembled AADT predictions for the greater 
Washington D.C. area

AADT error metrics for 14 U.S. hold out cities. RMSE is in units of vehicles per day.

AADT error metrics for international cities: 26 cities in the UK [8], Buenos Aires 
[9], and Paris [10]. RMSE is in units of vehicles per day.



Activity to Emissions
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Leverage region-specific emissions factors data to translate ML-predicted activity to total emissions.



U.S. Emissions Validation
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• Emissions estimates compared against other 
major emissions inventories [11,12,13] for 14 
hold out U.S. cities

• Strong correlation between our estimates 
and others

• Range of values highlights uncertainties and 
discrepancies between various methods 

MAE and Mean Error are in units of tonnes CO2



Global Emissions Validation
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MAE and Mean Error are in units of tonnes CO2

• Emissions estimates compared against other 
global emissions inventories [14,15] for 14 
hold out U.S. cities

• Strong correlation between our estimates 
and others

• Discrepancies between estimates warrants 
future investigation



Discussion and Next Steps
• Hybrid ML + emissions factors method for global road transportation emissions estimation

• Validation performed for both ML activity predictions and derived emission estimates, both within the U.S. and 
for global cities.

• Plan to explore integration of traffic/mobility data to improve temporal resolution

• Emissions estimates for top 500 global cities included in November 2022 Climate TRACE asset-level release 
(www.climatetrace.org)
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Contact: derek.rollend@jhuapl.edu

http://www.climatetrace.org/
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