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Introduction
• Climate change: Proliferation of highly variable renewables

• Cyber-physical: Vulnerabilities in the cyber plane

• Stable operations: Real-time monitoring resilient to cyber attacks



Motivation
• Impact of cyber attacks on grid operation:

• Renewables: Introduce significant flux in the grid

• Attacks: Increase modes of instability in the grid 

• Cyber attacks examples:

• 2011, Stuxnet worm Iran nuclear plant [1]

• 2015, Ukraine blackout [2]

• 2019, Venezuela power grid attack [3]



Problem Statement
• State estimation:

• Infer grid states (x) given a set of grid measurements (y)
𝑦 + 𝜖 = 𝐻 𝑥 ; 𝑥 = 𝐻!"(𝑦 + 𝜖)

• Cycle GAN is used for approximating 𝐻 and 𝐻!"

• False data injection: Common attack in state estimation

• Cannot detect perturbations to measurements using traditional residual checking

• Lead to incorrect state inferences
𝑥 = 𝐻!"(𝑦 + 𝑎 + 𝜖)

• Iterative gradients computed using Cycle GAN modules used for reconstructing
perturbed measurements
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Cycle GAN
• Composed of two sets of GANs

• Forward GAN: G is mapping from measurements to states (𝐺 ≈ 𝐻!")

• Reverse GAN: F is mapping from states to measurements (𝐹 ≈ 𝐻)



Cycle GAN
• Mapping between domains: Cycle consistency loss



Cycle GAN: Framework



Proposed Algorithm
• Detection:

• Residual-based: If|𝑦! − 𝐹(𝐺(𝑦))!| ≥ 𝛼 , 𝑖"# component is labelled as 
attacked

• Reconstruction:

Problem formulation: 𝒫#$$: min% ||𝑦 − 𝐹(𝐺(𝑦))||&&
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Results

• IEEE 118-bus benchmark system:

• 759 grid measurements, 235 states 

• Attack simulation: 

• Randomly selected columns ,  ±10% perturbation



Results



Conclusion
• Novel reconstruction method:

• No need for underlying knowledge of grid topology and parameters

• Inferencing is computationally inexpensive after training Cycle GAN

• Effective for high rates of perturbation

• Future work:

• Iterative revisions reach 0 most of the time but is not stopped at 
these points

• Need to identify an effective stopping criteria
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