RECONSTRUCTION OF GRID MEASUREMENTS IN THE PRESENCE OF ADVERSARIAL ATTACKS

Amirmohammad Naeini, Samer El Kababji, Pirathayini Srikantha York University Nov 7, 2022

Introduction

- Climate change: Proliferation of highly variable renewables
- Cyber-physical: Vulnerabilities in the cyber plane
- Stable operations: Real-time monitoring resilient to cyber attacks

Motivation

- Impact of cyber attacks on grid operation:
 - Renewables: Introduce significant flux in the grid
 - Attacks: Increase modes of instability in the grid
- Cyber attacks examples:
 - 2011, Stuxnet worm Iran nuclear plant [1]
 - 2015, Ukraine blackout [2]
 - 2019, Venezuela power grid attack [3]

Problem Statement

State estimation:

Infer grid states (x) given a set of grid measurements (y)

$$y + \epsilon = H(x); \quad x = H^{-1}(y + \epsilon)$$

- Cycle GAN is used for approximating H and H^{-1}
- False data injection: Common attack in state estimation
 - Cannot detect perturbations to measurements using traditional residual checking
 - Lead to incorrect state inferences

$$x = H^{-1}(y + a + \epsilon)$$

 Iterative gradients computed using Cycle GAN modules used for reconstructing perturbed measurements

Existing Work

	No knowledge of grid structure	Unsupervised Training Dataset	Recovering from higher rates of perturbation
Proposed Method	√	✓	✓
GAN Based method [4]	\boldsymbol{X}	X	?
Numerical Method [5]	✓	N/A	?
Machine Learning [6]	X	X	✓

Cycle GAN

- Composed of two sets of GANs
 - Forward GAN: G is mapping from measurements to states ($G \approx H^{-1}$)
 - Reverse GAN: F is mapping from states to measurements ($F \approx H$)

Cycle GAN

Mapping between domains: Cycle consistency loss

Cycle GAN: Framework

Grid State Generator Neural Network - G			
	Input: 759		
Nodes	L_1 :512, L_2 :1024, L_3 :2048, L_4 :1024, L_5 :512		
	Output: 235		
Activation	relu, relu, relu, relu, tanh		
Grid State Discriminator Neural Network- D_x			
Nodes	Input: 235		
	L_1 :512, L_2 :1024, L_3 :256, L_4 :64		
	Output: 1		
Activation	relu, relu, relu, sigmoid		
Grid Measurement Generator Neural Network - F			
Nodes	Input: 235		
	$L_1:512$, $L_2:1024$, $L_3:2048$, $L_4:1024$, $L_5:512$		
	Output: 759		
Activation	relu, relu, relu, relu, tanh		
Grid Measurement Discriminator Neural Network- D_y			
	Input: 759		
Nodes	L_1 :512, L_2 :1024, L_3 :256, L_4 :64		
	Output: 1		
Activation	relu, relu, relu, sigmoid		

Proposed Algorithm

• Detection:

• Residual-based: If $|y_i - F(G(y))_i| \ge \alpha$, i^{th} component is labelled as attacked

Reconstruction:

Problem formulation: \mathcal{P}_{err} : $\min_{y} ||y - F(G(y))||_2^2$

Gradient computation: $\frac{\partial f}{\partial y} = -2 \cdot (y - F(G(y))(1 - \frac{\partial F(G(y))}{\partial G(y)} \frac{\partial G(y)}{\partial y})$

Iterative update rule: $y_{t+1} = y_t - 2\beta sgn(y_t - m_t)(y_t - m_t)\frac{\partial f(y_t)}{\partial y}$

Results

Attack simulation:

YORK

Randomly selected columns, ±10% perturbation

Results

G(H(y)) and GT error for two different cases.

Conclusion

Novel reconstruction method:

- No need for underlying knowledge of grid topology and parameters
- Inferencing is computationally inexpensive after training Cycle GAN
- Effective for high rates of perturbation

Future work:

 Iterative revisions reach 0 most of the time but is not stopped at these points

YORK • Need to identify an effective stopping criteria

References

- 1. Anwar, A., Mahmood, A. N., & Pickering, M. (2017). Modeling and performance evaluation of stealthy false data injection attacks on smart grid in the presence of corrupted measurements. *Journal of Computer and System Sciences*, 83(1), 58-72.
- 2. G. Liang, S. R. Weller, J. Zhao, F. Luo, and Z. Y. Dong, "The 2015 ukraine blackout: Implica157 tions for false data injection attacks," IEEE Trans. Power Syst., vol. 32, no. 4, pp. 3317–3318, 158 Jul. 2017.
- 3. Vaz, Ricardo. "Venezuela's power grid disabled by cyber attack," Green Left Weekly, no. 1213, 160 pp. 15, March 2019.
- 4. Karimipour, H., Dehghantanha, A., Parizi, R. M., Choo, K. K. R., & Leung, H. (2019). A deep and scalable unsupervised machine learning system for cyber-attack detection in large-scale smart grids. IEEE Access, 7, 80778-80788.
- 5. Ruan, J., Liang, G., Zhao, J., Qiu, J., & Dong, Z. Y. (2022). An Inertia-based Data Recovery Scheme for False Data Injection Attack. IEEE Transactions on Industrial Informatics.
- 6. Li, Y., Wang, Y., & Hu, S. (2019). Online generative adversary network based measurement recovery in false data injection attacks: A cyber-physical approach. IEEE Transactions on Industrial Informatics, 16(3), 2031-2043.