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Introduction

* Climate change: Proliferation of highly variable renewables
* Cyber-physical: Vulnerabilities in the cyber plane

* Stable operations: Real-time monitoring resilient to cyber attacks
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Motivation

* Impact of cyber attacks on grid operation:
* Renewables: Introduce significant flux in the grid

* Attacks: Increase modes of instability in the grid

* Cyber attacks examples:

* 2011, Stuxnet worm Iran nuclear plant [1]
* 2015, Ukraine blackout [2]

* 2019, Venezuela power grid attack [3]
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Problem Statement

* State estimation:

* Infer grid states (x) given a set of grid measurements (y)
y+e=HXx); x=H '(y+¢e

* Cycle GAN is used for approximating H and H -1

* False data injection: Common attack in state estimation
* Cannot detect perturbations to measurements using traditional residual checking

* |Lead to incorrect state inferences
x=HYy+a+e)

* lterative gradients computed using Cycle GAN modules used for reconstructing

perturbed measurements
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Cycle GAN

* Composed of two sets of GANs
* Forward GAN: G is mapping from measurements to states (G =~ H _1)

* Reverse GAN: F is mapping from states to measurements (FF = H)
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Cycle GAN

* Mapping between domains: Cycle consistency loss
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Cycle GAN: Framework
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Proposed Algorithm

®* Detection:

* Residual-based: If|y; — F(G(¥));| = a ,it" component is labelled as
attacked

®* Reconstruction:

Problem formulation: P,,...: min||y — F (G (y))| |%
y

- . Of 5 _ OF(G(y)) 9G(¥)
Gradient computation: 3y 2-(y—F(G(y))(1 360) ay)

lterative update rule: y;.1 = vy — 20sgn(y; — mg)(yy — m;) afa(yt)
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Results
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* 759 grid measurements, 235 states

* Attack simulation:
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Results
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Conclusion

* Novel reconstruction method:
* No need for underlying knowledge of grid topology and parameters
* Inferencing is computationally inexpensive after training Cycle GAN
* Effective for high rates of perturbation

* Future work:

* lterative revisions reach 0 most of the time but is not stopped at
these points

YORK * Need to identify an effective stopping criteria
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