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A Call to Action

% Climate Change Al initiative presents diverse challenges

% Opportunity to use AutoML techniques

> Hyperparameter optimization - HPO (model training)
> Neural architecture search - NAS (model selection)

“ Future challenge: Spatiotemporal data / Physics-constrained settings



Evaluating AutoML Out-of-the-box
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Benchmark #1: ClimART (NeurlPS DBT 2021)

Multi-objective NAS with mm
% Model selection from Cl GC orks, MLPs
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Benchmark #2: Open Catalyst Project (NeurlPS competition 2021)

New Catalysts for Renewable Energy Storage
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Benchmark #2: Open Catalyst Project

GraphNormer (SoTA approach)
+

HPO

{learning rate, warm-up steps, # layers, # attention heads, #blocks}

Only yields 0.65% improvement in MAE



Benchmark #3: SDWPF - Wind Power Forecasting (KDD Cup 2022)

< AutoML showed almost no improvement

< HPO / NAS applied to two winning competition submission
> Significant cost (up to 50 GPU hours) running AutoML



Promising Future Avenues

< NAS search spaces for spatiotemporal data forecasting

> Interpolation between model families: CNN, MLP, GCN, Graph Networks

> State-space models for longer sequences

» Architectures that incorporate physical constraints

> Drgona, Jan, et al. "Physics-constrained deep learning of multi-zone building thermal dynamics."



Checkout our GitHub repo

https://github.com/climate-change-automl/climate-change-automl



